scispace - formally typeset
Topic

Wideband

About: Wideband is a(n) research topic. Over the lifetime, 29217 publication(s) have been published within this topic receiving 330810 citation(s).

...read more

Papers
More filters

Proceedings ArticleDOI
Mayank Jain1, Jung-Il Choi1, Taemin Kim1, Dinesh Bharadia1  +5 moreInstitutions (3)
19 Sep 2011-
TL;DR: Experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.

...read more

Abstract: This paper presents a full duplex radio design using signal inversion and adaptive cancellation. Signal inversion uses a simple design based on a balanced/unbalanced (Balun) transformer. This new design, unlike prior work, supports wideband and high power systems. In theory, this new design has no limitation on bandwidth or power. In practice, we find that the signal inversion technique alone can cancel at least 45dB across a 40MHz bandwidth. Further, combining signal inversion cancellation with cancellation in the digital domain can reduce self-interference by up to 73dB for a 10MHz OFDM signal. This paper also presents a full duplex medium access control (MAC) design and evaluates it using a testbed of 5 prototype full duplex nodes. Full duplex reduces packet losses due to hidden terminals by up to 88%. Full duplex also mitigates unfair channel allocation in AP-based networks, increasing fairness from 0.85 to 0.98 while improving downlink throughput by 110% and uplink throughput by 15%. These experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.

...read more

1,413 citations


16


Journal ArticleDOI
Sergio Verdu1Institutions (1)
TL;DR: The fundamental bandwidth-power tradeoff of a general class of channels in the wideband regime characterized by low, but nonzero, spectral efficiency and energy per bit close to the minimum value required for reliable communication is found.

...read more

Abstract: The tradeoff of spectral efficiency (b/s/Hz) versus energy-per-information bit is the key measure of channel capacity in the wideband power-limited regime. This paper finds the fundamental bandwidth-power tradeoff of a general class of channels in the wideband regime characterized by low, but nonzero, spectral efficiency and energy per bit close to the minimum value required for reliable communication. A new criterion for optimality of signaling in the wideband regime is proposed, which, in contrast to the traditional criterion, is meaningful for finite-bandwidth communication.

...read more

1,279 citations


Journal ArticleDOI
Milica Stojanovic1, James C. Preisig2Institutions (2)
TL;DR: There are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites, but the channel capacity depends on the distance, and may be extremely limited.

...read more

Abstract: Acoustic propagation is characterized by three major factors: attenuation that increases with signal frequency, time-varying multipath propagation, and low speed of sound (1500 m/s). The background noise, although often characterized as Gaussian, is not white, but has a decaying power spectral density. The channel capacity depends on the distance, and may be extremely limited. Because acoustic propagation is best supported at low frequencies, although the total available bandwidth may be low, an acoustic communication system is inherently wideband in the sense that the bandwidth is not negligible with respect to its center frequency. The channel can have a sparse impulse response, where each physical path acts as a time-varying low-pass filter, and motion introduces additional Doppler spreading and shifting. Surface waves, internal turbulence, fluctuations in the sound speed, and other small-scale phenomena contribute to random signal variations. At this time, there are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites.

...read more

1,240 citations


Journal ArticleDOI
TL;DR: Experimental measurements and empirically-based propagation channel models for the 28, 38, 60, and 73 GHz mmWave bands are presented, using a wideband sliding correlator channel sounder with steerable directional horn antennas at both the transmitter and receiver from 2011 to 2013.

...read more

Abstract: The relatively unused millimeter-wave (mmWave) spectrum offers excellent opportunities to increase mobile capacity due to the enormous amount of available raw bandwidth. This paper presents experimental measurements and empirically-based propagation channel models for the 28, 38, 60, and 73 GHz mmWave bands, using a wideband sliding correlator channel sounder with steerable directional horn antennas at both the transmitter and receiver from 2011 to 2013. More than 15,000 power delay profiles were measured across the mmWave bands to yield directional and omnidirectional path loss models, temporal and spatial channel models, and outage probabilities. Models presented here offer side-by-side comparisons of propagation characteristics over a wide range of mmWave bands, and the results and models are useful for the research and standardization process of future mmWave systems. Directional and omnidirectional path loss models with respect to a 1 m close-in free space reference distance over a wide range of mmWave frequencies and scenarios using directional antennas in real-world environments are provided herein, and are shown to simplify mmWave path loss models, while allowing researchers to globally compare and standardize path loss parameters for emerging mmWave wireless networks. A new channel impulse response modeling framework, shown to agree with extensive mmWave measurements over several bands, is presented for use in link-layer simulations, using the observed fact that spatial lobes contain multipath energy that arrives at many different propagation time intervals. The results presented here may assist researchers in analyzing and simulating the performance of next-generation mmWave wireless networks that will rely on adaptive antennas and multiple-input and multiple-output (MIMO) antenna systems.

...read more

1,136 citations


Journal ArticleDOI
Moshe Mishali1, Yonina C. Eldar1Institutions (1)
TL;DR: This paper considers the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum, and proposes a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms.

...read more

Abstract: Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then low-pass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, real-time performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.

...read more

1,098 citations


13


Network Information
Related Topics (5)
Band-pass filter

28.6K papers, 336.5K citations

95% related
Antenna array

26.9K papers, 356.2K citations

95% related
Passband

14.5K papers, 170.5K citations

95% related
Impedance matching

21.5K papers, 254.2K citations

94% related
Phase shift module

10.8K papers, 98.9K citations

94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202225
20211,594
20202,005
20192,423
20182,278
20171,804

Top Attributes

Show by:

Topic's top 5 most impactful authors

Lei Zhu

135 papers, 1.5K citations

Wenquan Che

103 papers, 1.3K citations

Quan Xue

95 papers, 1.9K citations

Kwai-Man Luk

66 papers, 1.6K citations

Wenjie Feng

65 papers, 939 citations