scispace - formally typeset
Search or ask a question
Topic

Wideband

About: Wideband is a research topic. Over the lifetime, 29217 publications have been published within this topic receiving 330810 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: There are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites, but the channel capacity depends on the distance, and may be extremely limited.
Abstract: Acoustic propagation is characterized by three major factors: attenuation that increases with signal frequency, time-varying multipath propagation, and low speed of sound (1500 m/s). The background noise, although often characterized as Gaussian, is not white, but has a decaying power spectral density. The channel capacity depends on the distance, and may be extremely limited. Because acoustic propagation is best supported at low frequencies, although the total available bandwidth may be low, an acoustic communication system is inherently wideband in the sense that the bandwidth is not negligible with respect to its center frequency. The channel can have a sparse impulse response, where each physical path acts as a time-varying low-pass filter, and motion introduces additional Doppler spreading and shifting. Surface waves, internal turbulence, fluctuations in the sound speed, and other small-scale phenomena contribute to random signal variations. At this time, there are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites.

1,493 citations

Proceedings ArticleDOI
19 Sep 2011
TL;DR: Experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.
Abstract: This paper presents a full duplex radio design using signal inversion and adaptive cancellation. Signal inversion uses a simple design based on a balanced/unbalanced (Balun) transformer. This new design, unlike prior work, supports wideband and high power systems. In theory, this new design has no limitation on bandwidth or power. In practice, we find that the signal inversion technique alone can cancel at least 45dB across a 40MHz bandwidth. Further, combining signal inversion cancellation with cancellation in the digital domain can reduce self-interference by up to 73dB for a 10MHz OFDM signal. This paper also presents a full duplex medium access control (MAC) design and evaluates it using a testbed of 5 prototype full duplex nodes. Full duplex reduces packet losses due to hidden terminals by up to 88%. Full duplex also mitigates unfair channel allocation in AP-based networks, increasing fairness from 0.85 to 0.98 while improving downlink throughput by 110% and uplink throughput by 15%. These experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.

1,489 citations

Journal ArticleDOI
TL;DR: Experimental measurements and empirically-based propagation channel models for the 28, 38, 60, and 73 GHz mmWave bands are presented, using a wideband sliding correlator channel sounder with steerable directional horn antennas at both the transmitter and receiver from 2011 to 2013.
Abstract: The relatively unused millimeter-wave (mmWave) spectrum offers excellent opportunities to increase mobile capacity due to the enormous amount of available raw bandwidth. This paper presents experimental measurements and empirically-based propagation channel models for the 28, 38, 60, and 73 GHz mmWave bands, using a wideband sliding correlator channel sounder with steerable directional horn antennas at both the transmitter and receiver from 2011 to 2013. More than 15,000 power delay profiles were measured across the mmWave bands to yield directional and omnidirectional path loss models, temporal and spatial channel models, and outage probabilities. Models presented here offer side-by-side comparisons of propagation characteristics over a wide range of mmWave bands, and the results and models are useful for the research and standardization process of future mmWave systems. Directional and omnidirectional path loss models with respect to a 1 m close-in free space reference distance over a wide range of mmWave frequencies and scenarios using directional antennas in real-world environments are provided herein, and are shown to simplify mmWave path loss models, while allowing researchers to globally compare and standardize path loss parameters for emerging mmWave wireless networks. A new channel impulse response modeling framework, shown to agree with extensive mmWave measurements over several bands, is presented for use in link-layer simulations, using the observed fact that spatial lobes contain multipath energy that arrives at many different propagation time intervals. The results presented here may assist researchers in analyzing and simulating the performance of next-generation mmWave wireless networks that will rely on adaptive antennas and multiple-input and multiple-output (MIMO) antenna systems.

1,417 citations

Journal ArticleDOI
TL;DR: The fundamental bandwidth-power tradeoff of a general class of channels in the wideband regime characterized by low, but nonzero, spectral efficiency and energy per bit close to the minimum value required for reliable communication is found.
Abstract: The tradeoff of spectral efficiency (b/s/Hz) versus energy-per-information bit is the key measure of channel capacity in the wideband power-limited regime. This paper finds the fundamental bandwidth-power tradeoff of a general class of channels in the wideband regime characterized by low, but nonzero, spectral efficiency and energy per bit close to the minimum value required for reliable communication. A new criterion for optimality of signaling in the wideband regime is proposed, which, in contrast to the traditional criterion, is meaningful for finite-bandwidth communication.

1,320 citations

Journal ArticleDOI
TL;DR: This paper relates the general Volterra representation to the classical Wiener, Hammerstein, Wiener-Hammerstein, and parallel Wiener structures, and describes some state-of-the-art predistortion models based on memory polynomials, and proposes a new generalizedMemory polynomial that achieves the best performance to date.
Abstract: Conventional radio-frequency (RF) power amplifiers operating with wideband signals, such as wideband code-division multiple access (WCDMA) in the Universal Mobile Telecommunications System (UMTS) must be backed off considerably from their peak power level in order to control out-of-band spurious emissions, also known as "spectral regrowth." Adapting these amplifiers to wideband operation therefore entails larger size and higher cost than would otherwise be required for the same power output. An alternative solution, which is gaining widespread popularity, is to employ digital baseband predistortion ahead of the amplifier to compensate for the nonlinearity effects, hence allowing it to run closer to its maximum output power while maintaining low spectral regrowth. Recent improvements to the technique have included memory effects in the predistortion model, which are essential as the bandwidth increases. In this paper, we relate the general Volterra representation to the classical Wiener, Hammerstein, Wiener-Hammerstein, and parallel Wiener structures, and go on to describe some state-of-the-art predistortion models based on memory polynomials. We then propose a new generalized memory polynomial that achieves the best performance to date, as demonstrated herein with experimental results obtained from a testbed using an actual 30-W, 2-GHz power amplifier

1,305 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
93% related
Amplifier
163.9K papers, 1.3M citations
90% related
Wireless
133.4K papers, 1.9M citations
87% related
Resonator
76.5K papers, 1M citations
87% related
Communications system
88.1K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,215
20222,826
20211,598
20202,005
20192,423