scispace - formally typeset
Search or ask a question
Topic

Wind shear

About: Wind shear is a research topic. Over the lifetime, 8023 publications have been published within this topic receiving 185373 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil were described using data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment.
Abstract: In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (< 80% RH) and a wind shear layer that was both stronger (10(exp -3)/s) and deeper (700 mb). The larger CAPE resulted from strong insolation under relatively cloud-free skies (owing to reduced column humidity) and was also weakly capped in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.

83 citations

Journal ArticleDOI
TL;DR: In this article, a field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion by using meteorological towers and surface shear stress measurements with Irwin sensors.

83 citations

Journal ArticleDOI
TL;DR: In this article, a 3D numerical cloud model was used to investigate the meso-and convective-scale organization of a large tropical squall line that occurred on 22 February 1993 during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment.
Abstract: Mechanisms responsible for meso- and convective-scale organization within a large tropical squall line that occurred on 22 February 1993 during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment are investigated using a three-dimensional numerical cloud model. The squall line occurred in an environment typical of fast-moving tropical squall lines, characterized by moderate convective available potential energy and moderate-to-strong vertical shear beneath a low-level jet with weak reverse vertical shear above. A well-simulated aspect of the observed squall line is the evolution of a portion of its leading convective zone from a quasi-linear to a three-dimensional bow-shaped structure over a 2-h period. This transition is accompanied by the development of both a prominent mesoscale vortex along the northern edge of the 40–60-km long bow-shaped feature and elongated bands of weaker reflectivity situated rearward and oriented transverse to the leading edge, within enha...

83 citations

Journal ArticleDOI
TL;DR: In this paper, simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET) using the Advanced Research Weather Research and Forecasting (ARW) model.
Abstract: Simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET). The simulations were performed in real time using the Advanced Research Weather Research and Forecasting (WRF) model (ARW), using a moving, storm-centered nest of either 4- or 1.33-km grid spacing. The six simulations, ranging from 45 to 96 h in length, provide realistic evolution of asymmetric precipitation structures, implying control by the synoptic scale, primarily through the vertical wind shear. The authors find that, as expected, the magnitude of the vortex tilt increases with increasing shear, but it is not until the shear approaches 20 m s−1 that the total vortex circulation decreases. Furthermore, the total vertical mass flux is proportional to the shear for shears less than about 20–25 m s−1, and therefore maximizes, not in the tropical phase, but rather during ET. This has important implications for predictin...

83 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the propagation and initiation mechanisms of the boreal summer intraseasonal oscillation (BSISO) in the south Asian summer monsoon with a zonally symmetric atmospheric model.
Abstract: The propagation and initiation mechanisms of the boreal summer intraseasonal oscillation (BSISO) in the south Asian summer monsoon are examined with a zonally symmetric atmospheric model. In the axially symmetric model the effects of zonally propagating atmospheric waves are intentionally excluded. The model specifies mean flows and depicts the lowest baroclinic mode and a barotropic mode in the free troposphere. The two vertical modes are coupled by the time-mean vertical wind shear. The model atmosphere produces a 15–20-day oscillation, which is characterized by northward propagation of convection from south of the equator to the Indian monsoon trough region and a reinitiation of convection in the region between 10°S and the equator. The northward propagation in the model is produced by the free troposphere barotropic divergence, which leads convection by about a quarter of a cycle. The vertical advection of summer-mean easterly vertical wind shear by perturbation vertical motion inside the con...

83 citations


Network Information
Related Topics (5)
Wind speed
48.3K papers, 830.4K citations
90% related
Sea surface temperature
21.2K papers, 874.7K citations
87% related
Climate model
22.2K papers, 1.1M citations
85% related
Precipitation
32.8K papers, 990.4K citations
84% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023155
2022347
2021165
2020157
2019187
2018165