scispace - formally typeset
Search or ask a question
Topic

Wind shear

About: Wind shear is a research topic. Over the lifetime, 8023 publications have been published within this topic receiving 185373 citations.


Papers
More filters
01 Jan 1998
TL;DR: In this paper, a method for numerically simulating a three-dimensional field of turbulent windspeed (the Sandia method) for use in the aerodynamic and structural analyses of wind turbines is presented.
Abstract: A method for numerically simulating a three-dimensional field of turbulent windspeed (the “Sandia method”) for use in the aerodynamic and structural analyses of wind turbines is presented. The required inputs are single point power spectral densities (PSDs) and the coherence function. Suggestions for appropriate inputs and an example calculation are included. The simulation method is used to obtain “rotationally sampled” PSDs, which are compared with measurements obtained by Pacific Northwest Laboratories. The results show that the Sandia method is capable of producing simulations that agree with the measurements, especially when the coherence function is augmented from the usual form to include the ratio of spatial separation over height raised to the 0.25 power. The method is specialized for horizontal axis wind turbine analysis by phase lagging the simulations at each point in space so that wind speeds are simulated only when the turbine blade passes the point, reducing storage requirements and computation time by about an order of magnitude. For vertical axis applications, where interpolation will be required, the error induced by the interpolation is estimated and eliminated by the addition of white noise.

254 citations

Journal ArticleDOI
TL;DR: In this paper, the radial dependence of the height of the maximum wind speed in a hurricane, which is found to lower with increasing inertial stability (which in turn depends on increasing wind speed and decreasing radius) near the eyewall, is examined.
Abstract: This article examinesthe radial dependence of the height of the maximum wind speed in a hurricane, which is found to lower with increasing inertial stability (which in turn depends on increasing wind speed and decreasing radius) near the eyewall. The leveling off, or limiting value, of the marine drag coefficient in high winds is also examined. The drag coefficient, given similar wind speeds, is smaller for smaller-radii storms; enhanced sea sprayby short or breaking waves is speculatedas a cause. Afitting technique of dropsonde wind profiles is used to model the shape of the vertical profile of mean horizontal wind speeds in the hurricane boundary layer, using only the magnitude and radius of the ‘‘gradient’’ wind. The method slightly underestimates the surface winds in small but intense storms, but errors are less than 5% near the surface. The fit is then applied to a slab layer hurricane wind field model, and combined with a boundary layer transition model to estimate surface winds over both marine and land surfaces.

250 citations

Journal ArticleDOI
TL;DR: In this article, a suite of state-of-the-art global climate model experiments is used to project changes in vertical wind shear (Vs) over the tropical Atlantic during hurricane season, which has been historically associated with diminished hurricane activity and intensity.
Abstract: [1] To help understand possible impacts of anthropogenic greenhouse warming on hurricane activity, we assess model-projected changes in large-scale environmental factors tied to variations in hurricane statistics. This study focuses on vertical wind shear (Vs) over the tropical Atlantic during hurricane season, the increase of which has been historically associated with diminished hurricane activity and intensity. A suite of state-of-the-art global climate model experiments is used to project changes in Vs over the 21st century. Substantial increases in tropical Atlantic and East Pacific shear are robust features of these experiments, and are shown to be connected to the model-projected decrease in the Pacific Walker circulation. The relative changes in shear are found to be comparable to those of other large-scale environmental parameters associated with Atlantic hurricane activity. The influence of these Vs changes should be incorporated into projections of long-term hurricane activity.

250 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present studies of four cases of mesoscale variance enhancements of horizontal velocity and temperature due to frontal activity, nonfrontal convection, and wind shear.
Abstract: We present studies of four cases of mesoscale variance enhancements of horizontal velocity and temperature due to frontal activity, nonfrontal convection, and wind shear. These data were obtained aboard commercial aircraft during the Global Atmospheric Sampling Program (GASP) in 1978 and 1979 and from the corresponding meteorological analyses and satellite imagery. Additional GASP data were used to permit a statistical assessment of the importance of various sources of enhanced variances. Our results, and those in a companion paper addressing the variance enhancements associated with topography, represent refinements of previous source analyses using the GASP dataset. Significant findings include mean variance enhancements of velocity and temperature due to convection and jet-stream flow ranging from ∼2 to 8 for 64-km and 256-km data segments, and enhancements for individual segments as high as ∼20 to 100. The mean 64-km variance enhancement for all variables and source types, relative to a quies...

247 citations

Journal ArticleDOI
TL;DR: In this article, the structure of convectively generated rear-inflow jets and their role in the evolution of long-lived mesoconvective systems are investigated through an analysis of idealized three-dimensional simulations using a nonhydrostatic cloud model.
Abstract: In this study, the structure of convectively generated rear-inflow jets and their role in the evolution of long-lived mesoconvective systems are investigated through an analysis of idealized three-dimensional simulations using a nonhydrostatic cloud model. Rear-inflow jets are generated within these systems in response to the upshear-tilting of the convective circulation, as the horizontal buoyancy gradients along the back edge of the expanding system create a circulation that draws midlevel air in from the rear. Within this framework, a wide range of rear-inflow strengths and structures are produced, depending on the magnitude of the ambient convective available potential energy (CAPE) and the vertical wind shear. In general, for environments characterized by weak-to-moderate vertical wind shear and weak-to moderate CAPE, the rear-inflow jet descends and spreads along the surface well behind the leading edge of the gust front, and the subsequent convective activity becomes weaker. However, for e...

247 citations


Network Information
Related Topics (5)
Wind speed
48.3K papers, 830.4K citations
90% related
Sea surface temperature
21.2K papers, 874.7K citations
87% related
Climate model
22.2K papers, 1.1M citations
85% related
Precipitation
32.8K papers, 990.4K citations
84% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023155
2022347
2021165
2020157
2019187
2018165