scispace - formally typeset
Search or ask a question
Topic

Wind shear

About: Wind shear is a research topic. Over the lifetime, 8023 publications have been published within this topic receiving 185373 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an offshore stable platform has been instrumented with wind turbulence, temperature and wave height sensors, and data from this platform have been analyzed by the eddy correlation method to obtain wind stress and heat flux at wind speeds from 6 to 22 m s−1 in a deep-water wave regime, significantly extending the range of available measurements.
Abstract: An offshore stable platform has been instrumented with wind turbulence, temperature and wave height sensors. Data from this platform have been analyzed by the eddy correlation method to obtain wind stress and heat flux at wind speeds from 6 to 22 m s−1 in a deep-water wave regime, significantly extending the range of available measurements. The sea surface drag coefficient increases gradually with increasing wind speed. Sensible heat fluxes have been observed over a much wider range than previously available. Heat flux coefficients are higher in unstable than stable conditions, but are not seen to increase with increasing wind speed.

701 citations

Journal ArticleDOI
TL;DR: In this paper, a technique for the measurement of kinematic properties of a wind field in situations of widespread precipitation, using a single Doppler radar to sense the motion of the precipitation particles, is proposed.
Abstract: A technique is proposed for the measurement of kinematic properties of a wind field in situations of widespread precipitation, using a single Doppler radar to sense the motion of the precipitation particles. The technique is an extension of ideas put forward by Probert-Jones, Lhermitte, Atlas, Caton and Harrold, and is based upon the Velocity-Azimuth Display (VAD) obtained by scanning the radar beam about a vertical axis at a fixed elevation angle. Harmonic analysis of the VAD permits divergence to be obtained from the magnitude of the “zeroth” harmonic, wind speed and direction to be obtained from the amplitude and phase of the first harmonic, and resultant deformation and the axis of dilatation to be obtained from the amplitude and phase of the second harmonic. Although limitations to the accuracy of this technique are imposed by inhomogeneities in the horizontal distribution of precipitation fall speed and, in the presence of strong vertical wind shear, by elevation angle errors and reflectivi...

663 citations

Journal ArticleDOI
TL;DR: In this article, a series of numerical simulations of tropical cyclones in idealized large-scale environments is performed to examine the effects of vertical wind shear on the structure and intensity of hurricanes.
Abstract: A series of numerical simulations of tropical cyclones in idealized large-scale environments is performed to examine the effects of vertical wind shear on the structure and intensity of hurricanes. The simulations are performed using the nonhydrostatic Pennsylvania State University‐National Center for Atmospheric Research fifth-generation Mesoscale Model using a 5-km fine mesh and fully explicit representation of moist processes. When large-scale vertical shears are applied to mature tropical cyclones, the storms quickly develop wavenumber one asymmetries with upward motion and rainfall concentrated on the left side of the shear vector looking downshear, in agreement with earlier studies. The asymmetries develop due to the storm’s response to imbalances caused by the shear. The storms in shear weaken with time and eventually reach an approximate steady-state intensity that is well below their theoretical maximum potential intensity. As expected, the magnitude of the weakening increases with increasing shear. All of the storms experience time lags between the imposition of the large-scale shear and the resulting rise in the minimum central pressure. While the lag is at most a few hours when the storm is placed in very strong (15 m s21) shear, storms in weaker shears experience much longer lag times, with th e5ms 21 shear case showing no signs of weakening until more than 36 h after the shear is applied. These lags suggest that the storm intensity is to some degree predictable from observations of largescale shear changes. In all cases both the development of the asymmetries in core structure and the subsequent weakening of the storm occur before any resolvable tilt of the storm’s vertical axis occurs. It is hypothesized that the weakening of the storm occurs via the following sequence of events: First, the shear causes the structure of the eyewall region to become highly asymmetric throughout the depth of the storm. Second, the asymmetries in the upper troposphere, where the storm circulation is weaker, become sufficiently strong that air with high values of potential vorticity and equivalent potential temperature are mixed outward rather than into the eye. This allows the shear to ventilate the eye resulting in a loss of the warm core at upper levels, which causes the central pressure to rise, weakening the entire storm. The maximum potential vorticity becomes concentrated in saturated portions of the eyewall cloud aloft rather than in the eye. Third, the asymmetric features at upper levels are advected by the shear, causing the upper portions of the vortex to tilt approximately downshear. The storm weakens from the top down, reaching an approximate steady-state intensity when the ventilated layer can descend no farther due to the increasing strength and stability of the vortex at lower levels.

577 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of wind-generated, long gravity waves on the air flow was studied using the quasilinear theory of wind wave generation, which is an extension of the Miles' shear flow instability.
Abstract: In this paper we are concerned with the effect of wind-generated, long gravity waves on the air flow. We study this example of resonant wave-mean flow interaction using the quasilinear theory of wind-wave generation. This theory is an extension of the Miles' shear flow instability in that the effect of the gravity waves on the mean wind profile is taken into account as well. The direct effect of air turbulence on the mean wind profile is modeled by a mixing length model. We present results of the numerical calculation of the steady state wind profile for given wave spectra. Results are found to be sensitive for the parameterization of the high-frequency tail of the wave spectrum. Following a proposal by Snyder on the fetch or wave age dependence of the Phillips constant, a strong dependence of the drag of air flow over sea waves on the wave age is found. For young wind sea (small wave age) a strong coupling between wind and waves is found, whereas there is hardly no coupling for old wind sea. Thi...

572 citations

Journal ArticleDOI
TL;DR: In this article, the influence of various environmental factors on tropical cyclone intensity was explored using a simple coupled ocean-atmosphere model, which is capable of accurately replicating the intensity evolution of storms that move over oceans whose upper thermal structure is not far from monthly mean climatology and that are relatively unaffected by environmental wind shear.
Abstract: The influence of various environmental factors on tropical cyclone intensity is explored using a simple coupled ocean‐atmosphere model. It is first demonstrated that this model is capable of accurately replicating the intensity evolution of storms that move over oceans whose upper thermal structure is not far from monthly mean climatology and that are relatively unaffected by environmental wind shear. A parameterization of the effects of environmental wind shear is then developed and shown to work reasonably well in several cases for which the magnitude of the shear is relatively well known. When used for real-time forecasting guidance, the model is shown to perform better than other existing numerical models while being competitive with statistical methods. In the context of a limited number of case studies, the model is used to explore the sensitivity of storm intensity to its initialization and to a number of environmental factors, including potential intensity, storm track, wind shear, upper-ocean thermal structure, bathymetry, and land surface characteristics. All of these factors are shown to influence storm intensity, with their relative contributions varying greatly in space and time. It is argued that, in most cases, the greatest source of uncertainty in forecasts of storm intensity is uncertainty in forecast values of the environmental wind shear, the presence of which also reduces the inherent predictability of storm intensity.

555 citations


Network Information
Related Topics (5)
Wind speed
48.3K papers, 830.4K citations
90% related
Sea surface temperature
21.2K papers, 874.7K citations
87% related
Climate model
22.2K papers, 1.1M citations
85% related
Precipitation
32.8K papers, 990.4K citations
84% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023155
2022347
2021165
2020157
2019187
2018165