scispace - formally typeset
Search or ask a question
Topic

Wind shear

About: Wind shear is a research topic. Over the lifetime, 8023 publications have been published within this topic receiving 185373 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, four years of 10min mean wind data from the offshore measuring platform FINO1 (Forschung in Nord-und Ostsee 1) in the German Bight have been analyzed to obtain the dependence of turbulence intensity on the wind speed.

104 citations

Book ChapterDOI
01 Jan 1963
TL;DR: Severe local storms have been defined (Winston, 1956) as thunderstorms accompanied by very strong surface winds or large hailstones as discussed by the authors, and the word "local" is used to distinguish these storms from cyclones.
Abstract: Severe local storms have been defined (Winston, 1956) as thunderstorms accompanied by very strong surface winds or large hailstones. The word ‘local’ is used to distinguish these storms from cyclones.

104 citations

Journal ArticleDOI
TL;DR: In this article, airborne Doppler radar data collected in tropical cyclones by National Oceanic and Atmospheric Administration WP-3D aircraft over an 8-yr period was used to statistically analyze the vertical structure of tropical cyclone eyewalls with reference to the deep-layer shear.
Abstract: Airborne Doppler radar data collected in tropical cyclones by National Oceanic and Atmospheric Administration WP-3D aircraft over an 8-yr period (2003–10) are used to statistically analyze the vertical structure of tropical cyclone eyewalls with reference to the deep-layer shear. Convective evolution within the inner core conforms to patterns shown by previous studies: convection initiates downshear right, intensifies downshear left, and weakens upshear. Analysis of the vertical distribution of radar reflectivity and vertical air motion indicates the development of upper-level downdrafts in conjunction with strong convection downshear left and a maximum in frequency upshear left. Intense updrafts and downdrafts both conform to the shear asymmetry pattern. While strong updrafts occur in the eyewall, intense downdrafts show far more radial variability, particularly in the upshear-left quadrant, though they concentrate along the eyewall edges. Strong updrafts are collocated with low-level inflow and ...

104 citations

Journal ArticleDOI
TL;DR: In this paper, a mesoscale parameterization of the effects of wind farms that includes a momentum sink and a wind speed-dependent source of turbulent kinetic energy was carried out to quantify the impact of a wind farm on an atmospheric boundary layer throughout a diurnal cycle.
Abstract: Large wind farms are expected to influence local and regional atmospheric circulations. Using a mesoscale parameterization of the effects of wind farms that includes a momentum sink and a wind speed–dependent source of turbulent kinetic energy, simulations were carried out to quantify the impact of a wind farm on an atmospheric boundary layer throughout a diurnal cycle. The presence of a wind farm covering 10 km × 10 km is found to have a significant impact on the local atmospheric flow and on regions up to 60 km downwind at night. Daytime convective conditions show little impact of the wind farm on wind speeds, as the momentum deficits generated by the wind farm rapidly mix through the depth of the boundary layer. At night, the stable layer within the rotor area inhibits turbulent mixing of the momentum deficit, leading to a shallower wake and a greater reduction in the wind speed within the wake. Although a low-level jet forms at altitudes within the rotor area in the hours before dawn, it is co...

104 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of wind on phase speeds of waves was investigated by solving the first order perturbation problem of the coupled shear flows in air and water, and a logarithmic drift profile was proposed.
Abstract: Measurements of drift were made in a wind and wave facility at different elevations below the mean water level. The drift profiles were obtained for reference wind speeds, Ur = 3.1, 5.7 and 9.6 m/sec. The measurement technique involved tracing the movement of small paper discs which were soaked in water to become neutrally buoyant at the elevation of release. A logarithmic drift profile is proposed. The water shear velocity, U*w, predicts a surface stress, TS = pw U*S, in agreement with that obtained from the wind shear velocity, Ts = Pa U*li where pa and pw refer to air and water densities, respectively. The influence of wind on phase speeds of waves was investigated by solving the first order perturbation problem of the coupled shear flows in air and water. The air velocity profile was described by a logarithmic distribution and the drift profile was described by the proposed drift profile. Adequate agreement is found between the calculated and measured phase speed using Doppler radar in the wave number range 1.9 - 10 cm-1. In the wave number range 0.05 - 0.5 cm-1, measurements of phase speeds were obtained by using two wave gages. The waves were mechanically generated without wind and the wave gages were spaced to obtain coherent signals. The wind was then allowed to blow over the waves and the distance between wave gages was increased to maintain coherence. The wave length and frequency were obtained from the distance between the gages and from the generator frequency, respectively. The measured phase speeds were found to increase with wind speed consistent with theoretical computations.

104 citations


Network Information
Related Topics (5)
Wind speed
48.3K papers, 830.4K citations
90% related
Sea surface temperature
21.2K papers, 874.7K citations
87% related
Climate model
22.2K papers, 1.1M citations
85% related
Precipitation
32.8K papers, 990.4K citations
84% related
Boundary layer
64.9K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023155
2022347
2021165
2020157
2019187
2018165