scispace - formally typeset
Search or ask a question
Topic

Wind speed

About: Wind speed is a research topic. Over the lifetime, 48350 publications have been published within this topic receiving 830486 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, analytical expressions which specify non-dimensionalized wind speed and potential temperature gradients as functions of stability are integrated with Swinhank's wind and temperature profiles measured at Kerang, Australia.
Abstract: Analytical expressions which specify non-dimensionalized wind speed and potential temperature gradients as functions of stability are integrated. The integrated equations are tested against Swinhank's wind and temperature profiles measured at Kerang, Australia. It is found that a representation suggested independently by Businger and by Dyer gives the best fit to temperature profiles and describes the wind profiles equally as well as a relation suggested by Panofsky et al.

1,713 citations

Journal ArticleDOI
TL;DR: In this paper, the Wanninkhof dependence of the CO2 gas transfer velocity has been used to estimate the global ocean CO2 flux in the mean non-El Nino conditions for a reference year 1995.
Abstract: Based on about 940,000 measurements of surface-water pCO2 obtained since the International Geophysical Year of 1956–59, the climatological, monthly distribution of pCO2 in the global surface waters representing mean non-El Nino conditions has been obtained with a spatial resolution of 4°×5° for a reference year 1995. The monthly and annual net sea–air CO2 flux has been computed using the NCEP/NCAR 41-year mean monthly wind speeds. An annual net uptake flux of CO2 by the global oceans has been estimated to be 2.2 (+22% or ?19%) Pg C yr?1 using the (wind speed)2 dependence of the CO2 gas transfer velocity of Wanninkhof (J. Geophys. Res. 97 (1992) 7373). The errors associated with the wind-speed variation have been estimated using one standard deviation (about±2 m s?1) from the mean monthly wind speed observed over each 4°×5° pixel area of the global oceans. The new global uptake flux obtained with the Wanninkhof (wind speed)2 dependence is compared with those obtained previously using a smaller number of measurements, about 250,000 and 550,000, respectively, and are found to be consistent within±0.2 Pg C yr?1. This estimate for the global ocean uptake flux is consistent with the values of 2.0±0.6 Pg C yr?1 estimated on the basis of the observed changes in the atmospheric CO2 and oxygen concentrations during the 1990s (Nature 381 (1996) 218; Science 287 (2000) 2467). However, if the (wind speed)3 dependence of Wanninkhof and McGillis (Res. Lett. 26 (1999) 1889) is used instead, the annual ocean uptake as well as the sensitivity to wind-speed variability is increased by about 70%. A zone between 40° and 60° latitudes in both the northern and southern hemispheres is found to be a major sink for atmospheric CO2. In these areas, poleward-flowing warm waters meet and mix with the cold subpolar waters rich in nutrients. The pCO2 in the surface water is decreased by the cooling effect on warm waters and by the biological drawdown of pCO2 in subpolar waters. High wind speeds over these low pCO2 waters increase the CO2 uptake rate by the ocean waters. The pCO2 in surface waters of the global oceans varies seasonally over a wide range of about 60% above and below the current atmospheric pCO2 level of about 360 ?atm. A global map showing the seasonal amplitude of surface-water pCO2 is presented. The effect of biological utilization of CO2 is differentiated from that of seasonal temperature changes using seasonal temperature data. The seasonal amplitude of surface-water pCO2 in high-latitude waters located poleward of about 40° latitude and in the equatorial zone is dominated by the biology effect, whereas that in the temperate gyre regions is dominated by the temperature effect. These effects are about 6 months out of phase. Accordingly, along the boundaries between these two regimes, they tend to cancel each other, forming a zone of small pCO2 amplitude. In the oligotrophic waters of the northern and southern temperate gyres, the biology effect is about 35 ?atm on average. This is consistent with the biological export flux estimated by Laws et al. (Glob. Biogeochem. Cycles 14 (2000) 1231). Small areas such as the northwestern Arabian Sea and the eastern equatorial Pacific, where seasonal upwelling occurs, exhibit intense seasonal changes in pCO2 due to the biological drawdown of CO2.

1,637 citations

Journal ArticleDOI
TL;DR: The air-sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 to 2006 at frequencies ranging from 6-hourly to monthly as mentioned in this paper.
Abstract: The air–sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 at frequencies ranging from 6-hourly to monthly. All fluxes are computed over the 23 years from 1984 to 2006, but radiation prior to 1984 and precipitation before 1979 are given only as climatological mean annual cycles. The input data are based on NCEP reanalysis only for the near surface vector wind, temperature, specific humidity and density, and on a variety of satellite based radiation, sea surface temperature, sea-ice concentration and precipitation products. Some of these data are adjusted to agree in the mean with a variety of more reliable satellite and in situ measurements, that themselves are either too short a duration, or too regional in coverage. The major adjustments are a general increase in wind speed, decrease in humidity and reduction in tropical solar radiation. The climatological global mean air–sea heat and freshwater fluxes (1984–2006) then become 2 W/m2 and −0.1 mg/m2 per second, respectively, down from 30 W/m2 and 3.4 mg/m2 per second for the unaltered data. However, decadal means vary from 7.3 W/m2 (1977–1986) to −0.3 W/m2 (1997–2006). The spatial distributions of climatological fluxes display all the expected features. A comparison of zonally averaged wind stress components across ocean sub-basins reveals large differences between available products due both to winds and to the stress calculation. Regional comparisons of the heat and freshwater fluxes reveal an alarming range among alternatives; typically 40 W/m2 and 10 mg/m2 per second, respectively. The implied ocean heat transports are within the uncertainty of estimates from ocean observations in both the Atlantic and Indo-Pacific basins. They show about 2.4 PW of tropical heating, of which 80% is transported to the north, mostly in the Atlantic. There is similar good agreement in freshwater transport at many latitudes in both basins, but neither in the South Atlantic, nor at 35°N.

1,424 citations

Journal ArticleDOI
20 Mar 2003-Nature
TL;DR: It is found that surface momentum flux levels off as the wind speeds increase above hurricane force, contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.
Abstract: The transfer of momentum between the atmosphere and the ocean is described in terms of the variation of wind speed with height and a drag coefficient that increases with sea surface roughness and wind speed. But direct measurements have only been available for weak winds; momentum transfer under extreme wind conditions has therefore been extrapolated from these field measurements. Global Positioning System sondes have been used since 1997 to measure the profiles of the strong winds in the marine boundary layer associated with tropical cyclones. Here we present an analysis of these data, which show a logarithmic increase in mean wind speed with height in the lowest 200 m, maximum wind speed at 500 m and a gradual weakening up to a height of 3 km. By determining surface stress, roughness length and neutral stability drag coefficient, we find that surface momentum flux levels off as the wind speeds increase above hurricane force. This behaviour is contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.

1,314 citations

Journal ArticleDOI
TL;DR: The first estimation of the power dependence of gas transfer on molecular diffusivity in the marine environment is reported in this paper, which allows the impact of bubbles on estimates of the transfer velocity derived from changes in the helium/sulphur hexafluoride ratio to be assessed.
Abstract: Measurements of air-sea gas exchange rates are reported from two deliberate tracer experiments in the southern North Sea during February 1992 and 1993. A conservative tracer, spores of the bacterium Bacillus globigii var. Niger, was used for the first time in an in situ air-sea gas exchange experiment. This nonvolatile tracer is used to correct for dispersive dilution of the volatile tracers and allows three estimations of the transfer velocity for the same time period. The first estimation of the power dependence of gas transfer on molecular diffusivity in the marine environment is reported. This allows the impact of bubbles on estimates of the transfer velocity derived from changes in the helium/sulphur hexafluoride ratio to be assessed. Data from earlier dual tracer experiments are reinterpreted, and findings suggest that results from all dual tracer experiments are mutually consistent. The complete data set is used to test published parameterizations of gas transfer with wind speed. A gas ex- change relationship that shows a dependence on wind speed intermediate between those ofLiss and Merlivat [1986] and Wanninkhof [1992] is found to be optimal. The dual tracer data are shown to be reasonably consistent with global estimates of gas exchange based on the uptake of natural and bomb-derived radiocarbon. The degree of scatter in the data when plotted against wind speed suggests that parameters not scaling with wind speed are also influencing gas exchange rates.

1,283 citations


Network Information
Related Topics (5)
Wind power
99K papers, 1.5M citations
85% related
Greenhouse gas
44.9K papers, 1.3M citations
82% related
Climate change
99.2K papers, 3.5M citations
79% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Renewable energy
87.6K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,072
20224,507
20212,286
20202,692
20192,955
20182,775