scispace - formally typeset
Search or ask a question
Topic

Wind speed

About: Wind speed is a research topic. Over the lifetime, 48350 publications have been published within this topic receiving 830486 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a soil-derived dust emission scheme was designed to provide an explicit representation of the desert dust sources for the atmospheric transport models dealing with the simulation of the dust cycle.
Abstract: A soil-derived dust emission scheme has been designed to provide an explicit representation of the desert dust sources for the atmospheric transport models dealing with the simulation of the desert dust cycle. Two major factors characterizing the erodible surface are considered: (1) the size distribution of the erodible loose particles of the soil which controls the erosion threshold and the emission strength and (2) the surface roughness which imposes the efficient wind friction velocity acting on the erodible surface. These two parameters are included in a formulation of the threshold wind friction velocity by adapting a size-dependent parameterization proposed by Iversen and White (1982) and by applying to the rough erodible surfaces a drag partition scheme derived from Arya (1975). This parameterization of the threshold friction velocity has been included in an horizontal flux equation proposed by White (1979). This allows to attribute a specific production rate to each soil size range for each type of surface. The dust flux F is then considered as a fraction of the total horizontal flux G, the value of the ratio F/G being imposed, at this time, by the soil clay content. In summary, the computed mass fluxes depend on the soil size distribution, the roughness lengths, and the wind friction velocity. The different steps of this scheme have been independently validated by comparison with relevant experimental data. Globally, the agreement is satisfying, so that the dust fluxes could be retrieved with less uncertainties than those observed in previous simulations of the desert dust cycle.

1,244 citations

Book
01 Jan 2001
TL;DR: In this article, the authors present a detailed review of the aerodynamics of wind turbines with respect to structural dynamics and control, including a new control chapter that includes details on how to design a classical pitch and torque regulator to control rotational speed and power.
Abstract: Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate the vibration of the whole construction, as well as the time varying loads and global case studies.

1,192 citations

Journal ArticleDOI
TL;DR: In this article, the aerodynamic properties of wind turbine wakes are studied, focusing on the physics of power extraction by wind turbines, and the main interest is to study how the far wake decays downstream in order to estimate the effect produced in downstream turbines.

1,161 citations

Journal ArticleDOI
TL;DR: In this article, surface layer coefficients for wind profiles, wind stress, and heat flux in typical open sea conditions are briefly reviewed, and the results are presented in a tabular form suitable for climatological calculations from marine wind and temperature data.
Abstract: Surface layer coefficients for wind profiles, wind stress, and heat flux in typical open sea conditions are briefly reviewed. Businger-Dyer flux-gradient relationships and a Charnock wind stress formula fit the empirical data and are dimensionally consistent. These have been solved by an iterative method, and the results are presented in a tabular form suitable for climatological calculations from marine wind and temperature data.

1,101 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional wave spectral model is proposed for the high and low-wavenumber regimes, which is based on the Joint North Sea Wave Project (JONSWAP) in the long-wave regime and on the work of Phillips [1985] and Kitaigorodskii [1973] at the high-wavenumbers.
Abstract: Review of several recent ocean surface wave models finds that while comprehensive in many regards, these spectral models do not satisfy certain additional, but fundamental, criteria. We propose that these criteria include the ability to properly describe diverse fetch conditions and to provide agreement with in situ observations of Cox and Munk [1954] and Jahne and Riemer [1990] and Hara et al. [1994] data in the high-wavenumber regime. Moreover, we find numerous analytically undesirable aspects such as discontinuities across wavenumber limits, nonphysical tuning or adjustment parameters, and noncentrosymmetric directional spreading functions. This paper describes a two-dimensional wavenumber spectrum valid over all wavenumbers and analytically amenable to usage in electromagnetic models. The two regime model is formulated based on the Joint North Sea Wave Project (JONSWAP) in the long-wave regime and on the work of Phillips [1985] and Kitaigorodskii [1973] at the high wavenumbers. The omnidirectional and wind-dependent spectrum is constructed to agree with past and recent observations including the criteria mentioned above. The key feature of this model is the similarity of description for the high- and low-wavenumber regimes; both forms are posed to stress that the air-sea interaction process of friction between wind and waves (i.e., generalized wave age, u/c) is occurring at all wavelengths simultaneously. This wave age parameterization is the unifying feature of the spectrum. The spectrum's directional spreading function is symmetric about the wind direction and has both wavenumber and wind speed dependence. A ratio method is described that enables comparison of this spreading function with previous noncentrosymmetric forms. Radar data are purposefully excluded from this spectral development. Finally, a test of the spectrum is made by deriving roughness length using the boundary layer model of Kitaigorodskii. Our inference of drag coefficient versus wind speed and wave age shows encouraging agreement with Humidity Exchange Over the Sea (HEXOS) campaign results.

1,093 citations


Network Information
Related Topics (5)
Wind power
99K papers, 1.5M citations
85% related
Greenhouse gas
44.9K papers, 1.3M citations
82% related
Climate change
99.2K papers, 3.5M citations
79% related
Boundary layer
64.9K papers, 1.4M citations
79% related
Renewable energy
87.6K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,072
20224,507
20212,286
20202,692
20192,955
20182,775