scispace - formally typeset
Search or ask a question
Topic

Wind stress

About: Wind stress is a research topic. Over the lifetime, 6401 publications have been published within this topic receiving 236712 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of variability in wind speed on the calculated gas transfer velocities and the possibility of chemical enhancement of CO2 exchange at low wind speeds over the ocean is illustrated using a quadratic dependence of gas exchange on wind speed.
Abstract: Relationships between wind speed and gas transfer, combined with knowledge of the partial pressure difference of CO2 across the air-sea interface are frequently used to determine the CO2 flux between the ocean and the atmosphere. Little attention has been paid to the influence of variability in wind speed on the calculated gas transfer velocities and the possibility of chemical enhancement of CO2 exchange at low wind speeds over the ocean. The effect of these parameters is illustrated using a quadratic dependence of gas exchange on wind speed which is fit through gas transfer velocities over the ocean determined by the natural-14C disequilibrium and the bomb-14C inventory methods. Some of the variability between different data sets can be accounted for by the suggested mechanisms, but much of the variation appears due to other causes. Possible causes for the large difference between two frequently used relationships between gas transfer and wind speed are discussed. To determine fluxes of gases other than CO2 across the air-water interface, the relevant expressions for gas transfer, and the temperature and salinity dependence of the Schmidt number and solubility of several gases of environmental interest are included in an appendix.

4,187 citations

Journal ArticleDOI
TL;DR: In this paper, wind and air-minus-sea temperatures are calculated in a form suitable for determining stress by any bulk aerodynamics model in which the drag coefficient can be represented by six or less coefficients of a second-degree polynomial in wind speed and stability.
Abstract: Over 35 million surface observations covering the world ocean from 1870–1976 have been processed for the purpose of calculating monthly normals and standard errors of the eastward and northward components of the wind stress and work done by the winds in the lower 10 m of the atmosphere. The fields are intended to serve as boundary conditions for models of the ocean circulation. Wind and air-minus-sea temperatures are calculated in a form suitable for determining stress by any bulk aerodynamics model in which the drag coefficient can be represented by six or less coefficients of a second-degree polynomial in wind speed and stability. The particular case of the wind speed and stability dependent drag coefficient discussed by Bunker is selected for analysis. January and July charts of wind stress, curl of the wind stress, mass transport stream-function, divergence of the Ekman transport and the rate of mechanical energy transfer are illustrated and discussed.

1,872 citations

Journal ArticleDOI
TL;DR: In this paper, the vertical distribution of horizontal mean wind in the lowest 8 metres over a reservoir (1·6 km × 1 km) has been measured using sensitive anemometers freely exposed from a fixed mast in water 16 m deep, the fetch being more than 1 km.
Abstract: The vertical distribution of horizontal mean wind in the lowest 8 metres over a reservoir (1·6 km × 1 km) has been measured using sensitive anemometers freely exposed from a fixed mast in water 16 m deep, the fetch being more than 1 km. The resulting profiles are closely logarithmic, the small differences being systematic and possibly due to the thermal instability which existed when the measurements were made. The usual law for wind profiles in neutral stability is where u is the wind speed at height z, k is von Karman's constant, log z (0) the intercept on the log z axis, and u* the so-called friction velocity defined by τ0 = pu, τ0 being the surface drag and rH the density of the air. To characterize the profiles u*/k, their slope, was plotted in relation to z (0), their intercept; this allowed a direct comparison with other profiles, in particular those recently measured in a laboratory channel by Sibul. The agreement was better than expected and indicated that z (0) was comparatively independent of fetch and stability but was largely determined by u*. The relation between u* and z (0) agreed roughly with the simplest non-dimensional relation between them, gz (0)/u = constant, so that one is led to a generalized wind profile for flow over a water surface which specifies the drag, given the wind at one known height. An approximate value of the constant is 12·5. This expression can be compared with earlier work. The better wind-profile observations show rough agreement; the experimental scatter is necessarily large since a water surface is aerodynamically much smoother than most land surfaces, precision anemometry in difficult circumstances being required to provide sufficiently precise values. Oceanographic measurements of the tilt of water surfaces are in fair agreement at high wind speeds but at low wind speeds the data are conflicting. The early results which imply that the drag-coefficient (u/u2) increases with decreasing wind speed in light winds are thought to be in error; some support for this belief comes from recent estimates of drag using a modified ageostrophic technique, which agree roughly among themselves and with the general expression.

1,792 citations

Journal ArticleDOI
TL;DR: In this article, analytical expressions which specify non-dimensionalized wind speed and potential temperature gradients as functions of stability are integrated with Swinhank's wind and temperature profiles measured at Kerang, Australia.
Abstract: Analytical expressions which specify non-dimensionalized wind speed and potential temperature gradients as functions of stability are integrated. The integrated equations are tested against Swinhank's wind and temperature profiles measured at Kerang, Australia. It is found that a representation suggested independently by Businger and by Dyer gives the best fit to temperature profiles and describes the wind profiles equally as well as a relation suggested by Panofsky et al.

1,713 citations

Journal ArticleDOI
TL;DR: The air-sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 to 2006 at frequencies ranging from 6-hourly to monthly as mentioned in this paper.
Abstract: The air–sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 at frequencies ranging from 6-hourly to monthly. All fluxes are computed over the 23 years from 1984 to 2006, but radiation prior to 1984 and precipitation before 1979 are given only as climatological mean annual cycles. The input data are based on NCEP reanalysis only for the near surface vector wind, temperature, specific humidity and density, and on a variety of satellite based radiation, sea surface temperature, sea-ice concentration and precipitation products. Some of these data are adjusted to agree in the mean with a variety of more reliable satellite and in situ measurements, that themselves are either too short a duration, or too regional in coverage. The major adjustments are a general increase in wind speed, decrease in humidity and reduction in tropical solar radiation. The climatological global mean air–sea heat and freshwater fluxes (1984–2006) then become 2 W/m2 and −0.1 mg/m2 per second, respectively, down from 30 W/m2 and 3.4 mg/m2 per second for the unaltered data. However, decadal means vary from 7.3 W/m2 (1977–1986) to −0.3 W/m2 (1997–2006). The spatial distributions of climatological fluxes display all the expected features. A comparison of zonally averaged wind stress components across ocean sub-basins reveals large differences between available products due both to winds and to the stress calculation. Regional comparisons of the heat and freshwater fluxes reveal an alarming range among alternatives; typically 40 W/m2 and 10 mg/m2 per second, respectively. The implied ocean heat transports are within the uncertainty of estimates from ocean observations in both the Atlantic and Indo-Pacific basins. They show about 2.4 PW of tropical heating, of which 80% is transported to the north, mostly in the Atlantic. There is similar good agreement in freshwater transport at many latitudes in both basins, but neither in the South Atlantic, nor at 35°N.

1,424 citations


Network Information
Related Topics (5)
Sea surface temperature
21.2K papers, 874.7K citations
92% related
Sea ice
24.3K papers, 876.6K citations
89% related
Climate model
22.2K papers, 1.1M citations
88% related
Precipitation
32.8K papers, 990.4K citations
82% related
Phytoplankton
24.6K papers, 930.1K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202387
2022188
202197
2020109
2019128
2018119