scispace - formally typeset
Search or ask a question
Topic

Winding number

About: Winding number is a research topic. Over the lifetime, 1134 publications have been published within this topic receiving 29330 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors systematically studied topological phases of insulators and superconductors in three dimensions and showed that there exist topologically nontrivial (3D) topologically nonsmooth topological insulators in five out of ten symmetry classes introduced in the context of random matrix theory.
Abstract: We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced ${\mathbb{Z}}_{2}$ topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral $({p}_{x}\ifmmode\pm\else\textpm\fi{}i{p}_{y})$-wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to ``weak pairing'') and topologically trivial (analogous to ``strong pairing'') 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.

2,459 citations

Journal ArticleDOI
TL;DR: This work obtains the phase diagram of the non-Hermitian Su-Schrieffer-Heeger model, whose topological zero modes are determined by theNon-Bloch winding number instead of the Bloch-Hamiltonian-based topological number.
Abstract: The bulk-boundary correspondence is among the central issues of non-Hermitian topological states. We show that a previously overlooked "non-Hermitian skin effect" necessitates redefinition of topological invariants in a generalized Brillouin zone. The resultant phase diagrams dramatically differ from the usual Bloch theory. Specifically, we obtain the phase diagram of the non-Hermitian Su-Schrieffer-Heeger model, whose topological zero modes are determined by the non-Bloch winding number instead of the Bloch-Hamiltonian-based topological number. Our work settles the issue of the breakdown of conventional bulk-boundary correspondence and introduces the non-Bloch bulk-boundary correspondence.

1,326 citations

Journal ArticleDOI
TL;DR: The relation between two different interpretations of the Hall conductance as topological invariants is clarified and it is found that vortices are given by the edge states when they are degenerate with the bulk states.
Abstract: We consider the integer quantum Hall effect on a square lattice in a uniform rational magnetic field. The relation between two different interpretations of the Hall conductance as topological invariants is clarified. One is the Thouless--Kohmoto--Nightingale--den Nijs (TKNN) integer in the infinite system and the other is a winding number of the edge state. In the TKNN form of the Hall conductance, a phase of the Bloch wave function defines U(1) vortices on the magnetic Brillouin zone and the total vorticity gives ${\mathrm{\ensuremath{\sigma}}}_{\mathit{x}\mathit{y}}$. We find that these vortices are given by the edge states when they are degenerate with the bulk states.

1,118 citations

Book
01 Jun 1994
TL;DR: In this article, the authors studied the limit u* of minimizers uE of a complex valued Ginzburg-Landau equation involving a small parameter E. The limit u*, can also be viewed as a geometrical object, which is a minimizing harmonic map into S1 with prescribed boundary condition g.
Abstract: The mathematics in this book apply directly to classical problems in superconductors, superfluids and liquid crystals. It should be of interest to mathematicians, physicists and engineers working on modern materials research. The text is concerned with the study in two dimensions of stationary solutions uE of a complex valued Ginzburg-Landau equation involving a small parameter E. Such problems are related to questions occuring in physics, such as phase transistion phenomena in superconductors and superfluids. The parameter E has a dimension of a length, which is usually small. Thus, it should be of interest to study the asymptotics as E tends to zero. One of the main results asserts that the limit u* of minimizers uE exists. Moreover, u* is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or, as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are led to a concept of finite renormalized energy. The location of the singularities is completely determined by minimizing the renormalized energy among all possible configurations of defects. The limit u* can also be viewed as a geometrical object. It is a minimizing harmonic map into S1 with prescribed boundary condition g. Topological obstructions imply that every map u into S1 with u=g on the boundary must have infinite energy. Even though u* has infinite energy one can think of u* as having "less" infinite energy than any other map u with u=g on the boundary. The material presented in this book covers mostly recent and original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations and complex functions. It is designed for researchers and graduate students alike and can be used as a one-semester text.

882 citations

Journal ArticleDOI
TL;DR: In this paper, the bulk-boundary correspondence for topological insulators can be modified in the presence of non-Hermiticity, and the authors consider a one-dimensional tight-binding model with gain and loss as well as long-range hopping.
Abstract: We show that the bulk-boundary correspondence for topological insulators can be modified in the presence of non-Hermiticity. We consider a one-dimensional tight-binding model with gain and loss as well as long-range hopping. The system is described by a non-Hermitian Hamiltonian that encircles an exceptional point in momentum space. The winding number has a fractional value of 1/2. There is only one dynamically stable zero-energy edge state due to the defectiveness of the Hamiltonian. This edge state is robust to disorder due to protection by a chiral symmetry. We also discuss experimental realization with arrays of coupled resonator optical waveguides.

656 citations


Network Information
Related Topics (5)
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
93% related
Quantum
60K papers, 1.2M citations
90% related
Invariant (mathematics)
48.4K papers, 861.9K citations
87% related
Gauge theory
38.7K papers, 1.2M citations
86% related
Ground state
70K papers, 1.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
202270
202190
202070
201986
201879