scispace - formally typeset
Search or ask a question

Showing papers on "Wireless published in 2008"


Journal ArticleDOI
TL;DR: This paper designs the sensing duration to maximize the achievable throughput for the secondary network under the constraint that the primary users are sufficiently protected, and forms the sensing-throughput tradeoff problem mathematically, and uses energy detection sensing scheme to prove that the formulated problem indeed has one optimal sensing time which yields the highest throughput.
Abstract: In a cognitive radio network, the secondary users are allowed to utilize the frequency bands of primary users when these bands are not currently being used. To support this spectrum reuse functionality, the secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance in cognitive radio networks. There are two parameters associated with spectrum sensing: probability of detection and probability of false alarm. The higher the probability of detection, the better the primary users are protected. However, from the secondary users' perspective, the lower the probability of false alarm, the more chances the channel can be reused when it is available, thus the higher the achievable throughput for the secondary network. In this paper, we study the problem of designing the sensing duration to maximize the achievable throughput for the secondary network under the constraint that the primary users are sufficiently protected. We formulate the sensing-throughput tradeoff problem mathematically, and use energy detection sensing scheme to prove that the formulated problem indeed has one optimal sensing time which yields the highest throughput for the secondary network. Cooperative sensing using multiple mini-slots or multiple secondary users are also studied using the methodology proposed in this paper. Computer simulations have shown that for a 6 MHz channel, when the frame duration is 100 ms, and the signal-to-noise ratio of primary user at the secondary receiver is -20 dB, the optimal sensing time achieving the highest throughput while maintaining 90% detection probability is 14.2 ms. This optimal sensing time decreases when distributed spectrum sensing is applied.

2,889 citations


Journal ArticleDOI
TL;DR: This paper considers the problem of secret communication between two nodes, over a fading wireless medium, in the presence of a passive eavesdropper, and assumes that the transmitter and its helpers (amplifying relays) have more antennas than the eavesdroppers.
Abstract: The broadcast nature of the wireless medium makes the communication over this medium vulnerable to eavesdropping. This paper considers the problem of secret communication between two nodes, over a fading wireless medium, in the presence of a passive eavesdropper. The assumption used is that the transmitter and its helpers (amplifying relays) have more antennas than the eavesdropper. The transmitter ensures secrecy of communication by utilizing some of the available power to produce 'artificial noise', such that only the eavesdropper's channel is degraded. Two scenarios are considered, one where the transmitter has multiple transmit antennas, and the other where amplifying relays simulate the effect of multiple antennas. The channel state information (CSI) is assumed to be publicly known, and hence, the secrecy of communication is independent of the secrecy of CSI.

1,846 citations


Journal ArticleDOI
TL;DR: A practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security and is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Abstract: This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.

1,759 citations


Journal ArticleDOI
TL;DR: Recent developments and open research issues in spectrum management in CR networks are presented and four main challenges of spectrum management are discussed: spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.
Abstract: Cognitive radio networks will provide high bandwidth to mobile users via heterogeneous wireless architectures and dynamic spectrum access techniques. However, CR networks impose challenges due to the fluctuating nature of the available spectrum, as well as the diverse QoS requirements of various applications. Spectrum management functions can address these challenges for the realization of this new network paradigm. To provide a better understanding of CR networks, this article presents recent developments and open research issues in spectrum management in CR networks. More specifically, the discussion is focused on the development of CR networks that require no modification of existing networks. First, a brief overview of cognitive radio and the CR network architecture is provided. Then four main challenges of spectrum management are discussed: spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.

1,722 citations


Journal ArticleDOI
TL;DR: This tutorial provides a broad look at the field of limited feedback wireless communications, and reviews work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology.
Abstract: It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.

1,605 citations


Journal ArticleDOI
TL;DR: It is shown in this paper that an SNR wall reduction can be achieved by employing cooperation among independent cognitive radio users and a new softened hard combination scheme with two-bit overhead for each user is proposed to achieve a good tradeoff between detection performance and complexity.
Abstract: In this letter, we consider cooperative spectrum sensing based on energy detection in cognitive radio networks. Soft combination of the observed energies from different cognitive radio users is investigated. Based on the Neyman-Pearson criterion, we obtain an optimal soft combination scheme that maximizes the detection probability for a given false alarm probability. Encouraged by the performance gain of soft combination, we further propose a new softened hard combination scheme with two-bit overhead for each user and achieve a good tradeoff between detection performance and complexity.

911 citations


Journal ArticleDOI
TL;DR: This paper discusses a selection of promising and interesting research areas in the design of protocols and systems for wireless industrial communications that have either emerged as hot topics in the industrial communications community in the last few years, or which could be worthwhile research Topics in the next few years.
Abstract: In this paper we discuss a selection of promising and interesting research areas in the design of protocols and systems for wireless industrial communications. We have selected topics that have either emerged as hot topics in the industrial communications community in the last few years (like wireless sensor networks), or which could be worthwhile research topics in the next few years (for example cooperative diversity techniques for error control, cognitive radio/opportunistic spectrum access for mitigation of external interferences).

696 citations


Journal ArticleDOI
TL;DR: A hardware-constrained cognitive MAC, HC-MAC, is proposed to conduct efficient spectrum sensing and spectrum access decision in ad hoc cognitive radio networks while taking the hardware constraints into consideration.
Abstract: Radio spectrum resource is of fundamental importance for wireless communication. Recent reports show that most available spectrum has been allocated. While some of the spectrum bands (e.g., unlicensed band, GSM band) have seen increasingly crowded usage, most of the other spectrum resources are underutilized. This drives the emergence of open spectrum and dynamic spectrum access concepts, which allow unlicensed users equipped with cognitive radios to opportunistically access the spectrum not used by primary users. Cognitive radio has many advanced features, such as agilely sensing the existence of primary users and utilizing multiple spectrum bands simultaneously. However, in practice such capabilities are constrained by hardware cost. In this paper, we discuss how to conduct efficient spectrum management in ad hoc cognitive radio networks while taking the hardware constraints (e.g., single radio, partial spectrum sensing and spectrum aggregation limit) into consideration. A hardware-constrained cognitive MAC, HC-MAC, is proposed to conduct efficient spectrum sensing and spectrum access decision. We identify the issue of optimal spectrum sensing decision for a single secondary transmission pair, and formulate it as an optimal stopping problem. A decentralized MAC protocol is then proposed for the ad hoc cognitive radio networks. Simulation results are presented to demonstrate the effectiveness of our proposed protocol.

674 citations


Dissertation
04 Nov 2008
TL;DR: In this paper, the authors propose a solution to solve the problem of the problem: this paper ] of the "missing link" problem, i.i.p.II.
Abstract: II

655 citations


Proceedings ArticleDOI
22 Apr 2008
TL;DR: An introduction to the architecture of WirelessHART is given and several challenges the implementation team had to tackle during the implementation are described, such as the design of the timer, network wide synchronization, communication security, reliable mesh networking, and the central network manager.
Abstract: Wireless technology has been regarded as a paradigm shifter in the process industry. The first open wireless communication standard specifically designed for process measurement and control applications, WirelessHART was officially released in September 2007 (as a part of the HART 7 Specification). WirelessHART is a secure and TDMA- based wireless mesh networking technology operating in the 2.4 GHz ISM radio band. In this paper, we give an introduction to the architecture of WirelessHART and share our first-hand experience in building a prototype for this specification. We describe several challenges we had to tackle during the implementation, such as the design of the timer, network wide synchronization, communication security, reliable mesh networking, and the central network manager. For each challenge, we provide a detailed analysis and propose our solution. Based on the prototype implementation, a simple WirelessHART network has been built for the purpose of demonstration. The demonstration network in turn validates our design. To the best of our knowledge, this is the first reported effort to build a WirelessHART protocol stack.

634 citations


Book
29 Jan 2008
TL;DR: In this paper, the authors focus on multiple-antenna orthogonal frequency division multiplexing (MIMO OFDM), which will be applied as basis for the majority of near-future high-rate wireless systems.
Abstract: Wireless communication systems are persistently applying wider bandwidths, larger signal dynamics and higher carrier frequencies to fulfill the demand for higher data rates. This results in an ever increasing demand on the performance of low-cost and power-efficient radio frequency (RF) front-ends. Since the RF technology is, consequently, pushed to its operation boundaries, the intrinsic imperfections of the RF IC technology are more and more governing the system performance of wireless modems. "RF Imperfections in High-rate Wireless Systems" therefore presents a new vision on the design of wireless communication systems. In this approach the imperfections of the RF front-ends are accepted and digital signal processing algorithms are designed to suppress their impact on system performance. To illustrate this approach, this book focuses on multiple-antenna orthogonal frequency division multiplexing (MIMO OFDM), which will be applied as basis for the majority of near-future high-rate wireless systems. The basics of MIMO OFDM are introduced and the typically required signal processing in the implementation of such systems is elucidated. This book treats several of the front-end impairments that seriously affect the performance of MIMO OFDM systems: carrier frequency offset, phase noise, IQ imbalance and nonlinearities. To provide an in-depth understanding of the impact of these RF imperfections, analytical performance results are presented in the book. These results are then used to design different compensation approaches based on digital baseband processing. "RF Imperfections in High-rate Wireless Systems" is of interest to wireless system designers, who want to familiarise with the digital compensation of RF imperfections. For researchers in the field of wireless communications this book provides a valuable overview of this emerging research topic.

Journal ArticleDOI
TL;DR: This article presents the state-of-the-art of associated systems and their components and discusses related issues including communication link characterization, channel modeling, and link capacity study, as well as transceiver design, link duplexing, multiple access, and networking.
Abstract: Motivated by the recent and rapid developments in deep ultraviolet LEDs, solar blind ultraviolet filters, and detectors, this article reviews wireless UV technology used for communications and sensing in either line-of-sight or non-line-of-sight channel conditions. We present the state-of-the-art of associated systems and their components and discuss related issues including communication link characterization, channel modeling, and link capacity study, as well as transceiver design, link duplexing, multiple access, and networking. We also envision applications in the commercial and military sectors.

Posted Content
TL;DR: In this paper, a two-step amplify-and-forward protocol is used, in which the transmitter and relays not only use match filters to form a beam at the receiver but also adaptively adjust their transmit powers according to the channel strength information.
Abstract: This paper is on beamforming in wireless relay networks with perfect channel information at relays, the receiver, and the transmitter if there is a direct link between the transmitter and receiver. It is assumed that every node in the network has its own power constraint. A two-step amplify-and-forward protocol is used, in which the transmitter and relays not only use match filters to form a beam at the receiver but also adaptively adjust their transmit powers according to the channel strength information. For a network with any number of relays and no direct link, the optimal power control is solved analytically. The complexity of finding the exact solution is linear in the number of relays. Our results show that the transmitter should always use its maximal power and the optimal power used at a relay is not a binary function. It can take any value between zero and its maximum transmit power. Also, this value depends on the quality of all other channels in addition to the relay's own channels. Despite this coupling fact, distributive strategies are proposed in which, with the aid of a low-rate broadcast from the receiver, a relay needs only its own channel information to implement the optimal power control. Simulated performance shows that network beamforming achieves the maximal diversity and outperforms other existing schemes. Then, beamforming in networks with a direct link are considered. We show that when the direct link exists during the first step only, the optimal power control is the same as that of networks with no direct link. For networks with a direct link during the second step, recursive numerical algorithms are proposed to solve the power control problem. Simulation shows that by adjusting the transmitter and relays' powers adaptively, network performance is significantly improved.

Journal ArticleDOI
TL;DR: The numerical results show that the proposed scheme performs better than other vertical handoff decision algorithms, namely, simple additive weighting, the technique for order preference by similarity to ideal solution, and Grey relational analysis.
Abstract: The architecture for the Beyond 3rd Generation (B3G) or 4th Generation (4G) wireless networks aims at integrating various heterogeneous wireless access networks. One of the major design issues is the support of vertical handoff. Vertical handoff occurs when a mobile terminal switches from one network to another (e.g., from wireless local area network to code-division multiple-access 1x radio transmission technology). The objective of this paper is to determine the conditions under which vertical handoff should be performed. The problem is formulated as a Markov decision process with the objective of maximizing the total expected reward per connection. The network resources that are utilized by the connection are captured by a link reward function. A signaling cost is used to model the signaling and processing load incurred on the network when vertical handoff is performed. The value iteration algorithm is used to compute a stationary deterministic policy. For performance evaluation, voice and data applications are considered. The numerical results show that our proposed scheme performs better than other vertical handoff decision algorithms, namely, simple additive weighting, the technique for order preference by similarity to ideal solution, and Grey relational analysis.

Journal ArticleDOI
TL;DR: It is argued that collaborative spectrum sensing can make use of signal processing gains at the physical layer to mitigate strict requirements on the radio frequency front-end and to exploit spatial diversity through network cooperation to significantly improve sensing reliability.
Abstract: Cognitive radio (CR) has recently emerged as a promising technology to revolutionize spectrum utilization in wireless communications. In a CR network, secondary users continuously sense the spectral environment and adapt transmission parameters to opportunistically use the available spectrum. A fundamental problem for CRs is spectrum sensing; secondary users need to reliably detect weak primary signals of possibly different types over a targeted wide frequency band in order to identify spectral holes for opportunistic communications. Conceptually and practically, there is growing awareness that collaboration among several CRs can achieve considerable performance gains. This article provides an overview of the challenges and possible solutions for the design of collaborative wideband sensing in CR networks. It is argued that collaborative spectrum sensing can make use of signal processing gains at the physical layer to mitigate strict requirements on the radio frequency front-end and to exploit spatial diversity through network cooperation to significantly improve sensing reliability.

Proceedings ArticleDOI
13 Apr 2008
TL;DR: This work provides closed form analysis on secondary user performance, presents a tight capacity upper bound, and reveals the impact of various design options, such as sensing, packet length distribution, back-off time, packet overhead, and grouping.
Abstract: Driven by regulatory initiatives and radio technology advances, opportunistic spectrum access has the potential to mitigate spectrum scarcity and meet the increasing demand for spectrum. In this paper, we consider a scenario where secondary users can opportunistically access unused spectrum vacated by idle primaries. We introduce two metrics to protect primary performance, namely collision probability and overlapping time. We present three spectrum access schemes using different sensing, back-off, and transmission mechanisms. We show that they achieve indistinguishable secondary performance under given primary constraints. We provide closed form analysis on secondary user performance, present a tight capacity upper bound, and reveal the impact of various design options, such as sensing, packet length distribution, back-off time, packet overhead, and grouping. Our work sheds light on the fundamental properties and design criteria on opportunistic spectrum access.

Journal ArticleDOI
TL;DR: A comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses is provided and background information on the use of wireless technology and sensors to develop a wireless physiological measurement system is presented.
Abstract: Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

Proceedings ArticleDOI
15 May 2008
TL;DR: This paper describes a new class of attacks specific to cognitive radio networks, describing several classes of attacks and giving specific examples for dynamic spectrum access and adaptive radio scenarios, and providing a road-map for extending these ideas to higher layers in the network stack.
Abstract: This paper describes a new class of attacks specific to cognitive radio networks. Wireless devices that can learn from their environment can also be taught things by malicious elements of their environment. By putting artificial intelligence in charge of wireless network devices, we are allowing unanticipated, emergent behavior, fitting a perhaps distorted or manipulated level of optimality. The state space for a cognitive radio is made up of a variety of learned beliefs and current sensor inputs. By manipulating radio sensor inputs, an adversary can affect the beliefs of a radio, and consequently its behavior. In this paper we focus primarily on PHY-layer issues, describing several classes of attacks and giving specific examples for dynamic spectrum access and adaptive radio scenarios. These attacks demonstrate the capabilities of an attacker who can manipulate the spectral environment when a radio is learning. The most powerful of which is a self-propagating AI virus that could interactively teach radios to become malicious. We then describe some approaches for mitigating the effectiveness of these attacks by instilling some level of "common sense" into radio systems, and requiring learned beliefs to expire and be relearned. Lastly we provide a road-map for extending these ideas to higher layers in the network stack.

Journal ArticleDOI
TL;DR: This paper designs centralized and distributed algorithms for the problem of assigning channels to communication links in the network with the objective of minimizing the overall network interference, and develops a semidefinite program and a linear program formulation of the optimization problem to obtain lower bounds onOverall network interference.
Abstract: In this paper, we consider multihop wireless mesh networks, where each router node is equipped with multiple radio interfaces, and multiple channels are available for communication. We address the problem of assigning channels to communication links in the network with the objective of minimizing the overall network interference. Since the number of radios on any node can be less than the number of available channels, the channel assignment must obey the constraint that the number of different channels assigned to the links incident on any node is at most the number of radio interfaces on that node. The above optimization problem is known to be NP-hard. We design centralized and distributed algorithms for the above channel assignment problem. To evaluate the quality of the solutions obtained by our algorithms, we develop a semidefinite program and a linear program formulation of our optimization problem to obtain lower bounds on overall network interference. Empirical evaluations on randomly generated network graphs show that our algorithms perform close to the above established lower bounds, with the difference diminishing rapidly with increase in number of radios. Also, ns-2 simulations, as well as experimental studies on testbed, demonstrate the performance potential of our channel assignment algorithms in 802.11-based multiradio mesh networks.

Journal IssueDOI
01 Oct 2008
TL;DR: Recommendations are made for the selection of communication carriers for UWSNs with engineering countermeasures that can possibly enhance the communication efficiency in specified underwater environments.
Abstract: This paper reviews the physical fundamentals and engineering implementations for efficient information exchange via wireless communication using physical waves as the carrier among nodes in an underwater sensor network (UWSN). The physical waves under discussion include sound, radio, and light. We first present the fundamental physics of different waves; then we discuss and compare the pros and cons for adopting different communication carriers (acoustic, radio, and optical) based on the fundamental first principles of physics and engineering practice. The discussions are mainly targeted at underwater sensor networks (UWSNs) with densely deployed nodes. Based on the comparison study, we make recommendations for the selection of communication carriers for UWSNs with engineering countermeasures that can possibly enhance the communication efficiency in specified underwater environments. Copyright © 2008 John Wiley & Sons, Ltd.

Patent
29 Jan 2008
TL;DR: In this paper, the authors proposed a communication system providing wireless communication among wireless users through a number of cellular base stations, each including at least transport management equipment and broadband equipment, at least one of which supports at least remote cellular station including RF equipment for communication with users of cellular devices.
Abstract: A communication system providing wireless communication among wireless users through a number of cellular base stations, each including at least transport management equipment and broadband equipment, at least one of which supports at least remote cellular station including RF equipment for communication with users of cellular devices. The system includes at lease one wireless narrow beam communication link operating at millimeter wave frequencies in excess of 60 GHz connecting a remote cellular station with a cellular base station equipped with broad band conversion electronic equipment and transport management equipment. In preferred embodiment the communication system includes a large number of remote cellular stations with each remote cellular station serving a separate communication cell. Each remote cellular station is equipped with a low frequency wireless transceiver for communicating with the wireless users within the cell at a radio frequency lower than 6 GHz and a narrow beam millimeter wave wireless transceiver operating at a millimeter wave frequency higher than 60 GHz for communicating with another millimeter wave transceiver at another remote cellular station or a millimeter wave transceiver at a base station.

Proceedings ArticleDOI
03 Mar 2008
TL;DR: MiXiM as mentioned in this paper joins and extends several existing simulation frameworks developed for wireless and mobile simulations in OMNeT++, providing detailed models of the wireless channel, wireless connectivity, mobility models, models for obstacles and many communication protocols especially at the medium access control (MAC) level.
Abstract: Wireless communication has attracted considerable interest in the research community, and many wireless networks are evaluated using discrete event simulators like OMNeT++. Although OMNeT++ provides a powerful and clear simulation framework, it lacks of direct support and a concise modeling chain for wireless communication. Both is provided by MiXiM. MiXiM joins and extends several existing simulation frameworks developed for wireless and mobile simulations in OMNeT++. It provides detailed models of the wireless channel (fading, etc.), wireless connectivity, mobility models, models for obstacles and many communication protocols especially at the Medium Access Control (MAC) level. Further, it provides a user-friendly graphical representation of wireless and mobile networks in OMNeT++, supporting debugging and defining even complex wireless scenarios. Though still in development, MiXiM already is a powerful tool for performance analysis of wireless networks. Its extensive functionality and clear concept may motivate researches to contribute to this open-source project [4].

Journal ArticleDOI
TL;DR: A physical-layer authentication algorithm that utilizes channel probing and hypothesis testing to determine whether current and prior communication attempts are made by the same transmit terminal, so that legitimate users can be reliably authenticated and false users can been reliably detected.
Abstract: The wireless medium contains domain-specific information that can be used to complement and enhance traditional security mechanisms. In this paper we propose ways to exploit the spatial variability of the radio channel response in a rich scattering environment, as is typical of indoor environments. Specifically, we describe a physical-layer authentication algorithm that utilizes channel probing and hypothesis testing to determine whether current and prior communication attempts are made by the same transmit terminal. In this way, legitimate users can be reliably authenticated and false users can be reliably detected. We analyze the ability of a receiver to discriminate between transmitters (users) according to their channel frequency responses. This work is based on a generalized channel response with both spatial and temporal variability, and considers correlations among the time, frequency and spatial domains. Simulation results, using the ray-tracing tool WiSE to generate the time-averaged response, verify the efficacy of the approach under realistic channel conditions, as well as its capability to work under unknown channel variations.

Patent
James D. Bennett1
30 Sep 2008
TL;DR: In this paper, a power delivery system includes a power transmitting unit having a power source operable to source alternating current power and a sending resonant coupling component operable for wireless power transmission by a non-radiated magnetic field at a target resonant frequency.
Abstract: A power delivery system wirelessly deliver electric power and a communication signal to a target device. The power delivery system includes a power transmitting unit having a power source operable to source alternating current power and a sending resonant coupling component operable to couple the alternating current power to a coil for wireless power transmission by a non-radiated magnetic field at a target resonant frequency. The power transmitting unit is capable of dynamically tuning the wireless power transmission to the target resonant frequency wherein the target resonant frequency is specified dynamically. A communication module couples to the power transmitting unit and is operable to couple the communication signal to the non-radiated magnetic field. Operations may include target device authentication, target resonant frequency information communication, billing, and device management.

Book
01 Jan 2008
TL;DR: This chapter discusses coding for discrete sources, quantization, detection, coding and decoding in wireless digital communication, and its applications in robotics and artificial intelligence.
Abstract: Preface 1. Introduction to digital communication 2. Coding for discrete sources 3. Quantization 4. Source and channel waveforms 5. Vector spaces and signal space 6. Channels, modulation, and demodulation 7. Random processes and noise 8. Detection, coding and decoding 9. Wireless digital communication.

Patent
24 Jan 2008
TL;DR: In this paper, a method consistent with certain embodiments provides portable delivery of television programs to a portable wireless device (PWD) involves using the PWD to capture a sample of a program being played by a television, transmitting attributes of the captured sample to a service provider so that the service provider can identify the program played by the television.
Abstract: A method consistent with certain embodiments provides portable delivery of television programs to a portable wireless device (PWD) involves using the PWD to capture a sample of a program being played by a television; transmitting attributes of the captured sample to a service provider so that the service provider can identify the program being played by the television; and receiving the television program at the PWD from the service provider via a wireless transmission. This abstract is not to be considered limiting, since other embodiments deviate from the features described in this abstract.

DatasetDOI
TL;DR: The rapid progress of wireless communication, embedded micro-electro-mechanical systems (MEMS), and integrated circuits (ICs) in mobile devices and embedded systems is being studied.
Abstract: The rapid progress of wireless communication, embedded micro-electro-mechanical systems (MEMS), and …

Journal ArticleDOI
17 Aug 2008
TL;DR: This work quantifies the impact of channel width on throughput, range, and power consumption, and presents a channel width adaptation algorithm, called SampleWidth, based on a simple search process that builds on top of existing techniques for adapting modulation.
Abstract: We study a fundamental yet under-explored facet in wireless communication -- the width of the spectrum over which transmitters spread their signals, or the channel width. Through detailed measurements in controlled and live environments, and using only commodity 802.11 hardware, we first quantify the impact of channel width on throughput, range, and power consumption. Taken together, our findings make a strong case for wireless systems that adapt channel width. Such adaptation brings unique benefits. For instance, when the throughput required is low, moving to a narrower channel increases range and reduces power consumption; in fixed-width systems, these two quantities are always in conflict. We then present a channel width adaptation algorithm, called SampleWidth, for the base case of two communicating nodes. This algorithm is based on a simple search process that builds on top of existing techniques for adapting modulation. Per specified policy, it can maximize throughput or minimize power consumption. Evaluation using a prototype implementation shows that SampleWidth correctly identities the optimal width under a range of scenarios. In our experiments with mobility, it increases throughput by more than 60% compared to the best fixed-width configuration.

01 Jan 2008
TL;DR: This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communication networks and covers a wide range of techniques for modeling, designing, and analyzing communication networks using game theory, as well as state of theart distributed design techniques.
Abstract: This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communication networks. Future networkswillrelyonautonomousanddistributedarchitecturestoimprovetheefficiency and flexibility of mobile applications, and game theory provides the ideal framework for designing efficient and robust distributed algorithms. This book enables readers to develop a solid understanding of game theory, its applications, and its use as an effective tool for addressing various problems in wireless communication and networking. The key results and tools of game theory are covered, as are various real-world technologies including 3G/4G networks, wireless LANs, sensor networks, cognitive networks, and Internet networks. The book also covers a wide range of techniques for modeling, designing, and analyzing communication networks using game theory, as well as state-of-the-art distributed design techniques. This is an ideal resource for communications engineers, researchers, and graduate and undergraduate students.

Proceedings ArticleDOI
18 May 2008
TL;DR: This work proposes an uncoordinated frequency hopping (UFH) scheme that breaks this dependency and enables key establishment in the presence of a communication jammer and shows its feasibility, both in terms of execution time and resource requirements.
Abstract: We consider the following problem: how can two devices that do not share any secrets establish a shared secret key over a wireless radio channel in the presence of a communication jammer? An inherent challenge in solving this problem is that known anti-jamming techniques (e.g., frequency hopping or direct-sequence spread spectrum) which should support device communication during the key establishment require that the devices share a secret spreading key (or code) prior to the start of their communication. This requirement creates a circular dependency between antijamming spread-spectrum communication and key establishment, which has so far not been addressed. In this work, we propose an uncoordinated frequency hopping (UFH) scheme that breaks this dependency and enables key establishment in the presence of a communication jammer. We perform a detailed analysis of our UFH scheme and show its feasibility, both in terms of execution time and resource requirements.