scispace - formally typeset
Search or ask a question

Showing papers on "Wireless published in 2011"


Journal ArticleDOI
Zhouyue Pi1, Farooq Khan1
TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Abstract: Almost all mobile communication systems today use spectrum in the range of 300 MHz-3 GHz. In this article, we reason why the wireless community should start looking at the 3-300 GHz spectrum for mobile broadband applications. We discuss propagation and device technology challenges associated with this band as well as its unique advantages for mobile communication. We introduce a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system. We demonstrate the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment. A few key concepts in MMB network architecture such as the MMB base station grid, MMB interBS backhaul link, and a hybrid MMB + 4G system are described. We also discuss beamforming techniques and the frame structure of the MMB air interface.

2,487 citations


Proceedings ArticleDOI
19 Sep 2011
TL;DR: Experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.
Abstract: This paper presents a full duplex radio design using signal inversion and adaptive cancellation. Signal inversion uses a simple design based on a balanced/unbalanced (Balun) transformer. This new design, unlike prior work, supports wideband and high power systems. In theory, this new design has no limitation on bandwidth or power. In practice, we find that the signal inversion technique alone can cancel at least 45dB across a 40MHz bandwidth. Further, combining signal inversion cancellation with cancellation in the digital domain can reduce self-interference by up to 73dB for a 10MHz OFDM signal. This paper also presents a full duplex medium access control (MAC) design and evaluates it using a testbed of 5 prototype full duplex nodes. Full duplex reduces packet losses due to hidden terminals by up to 88%. Full duplex also mitigates unfair channel allocation in AP-based networks, increasing fairness from 0.85 to 0.98 while improving downlink throughput by 110% and uplink throughput by 15%. These experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.

1,489 citations


Journal ArticleDOI
TL;DR: Recent advances in research related to cognitive radios are surveyed, including the fundamentals of cognitive radio technology, architecture of a cognitive radio network and its applications, and important issues in dynamic spectrum allocation and sharing are investigated in detail.
Abstract: With the rapid deployment of new wireless devices and applications, the last decade has witnessed a growing demand for wireless radio spectrum. However, the fixed spectrum assignment policy becomes a bottleneck for more efficient spectrum utilization, under which a great portion of the licensed spectrum is severely under-utilized. The inefficient usage of the limited spectrum resources urges the spectrum regulatory bodies to review their policy and start to seek for innovative communication technology that can exploit the wireless spectrum in a more intelligent and flexible way. The concept of cognitive radio is proposed to address the issue of spectrum efficiency and has been receiving an increasing attention in recent years, since it equips wireless users the capability to optimally adapt their operating parameters according to the interactions with the surrounding radio environment. There have been many significant developments in the past few years on cognitive radios. This paper surveys recent advances in research related to cognitive radios. The fundamentals of cognitive radio technology, architecture of a cognitive radio network and its applications are first introduced. The existing works in spectrum sensing are reviewed, and important issues in dynamic spectrum allocation and sharing are investigated in detail.

1,329 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider a point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and they consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

1,130 citations


Journal ArticleDOI
TL;DR: In this paper, the authors propose a framework for green radio research and integrate the fundamental issues that are currently scattered, which consists of four fundamental tradeoffs: deployment efficiency, energy efficiency, spectrum efficiency and delay power.
Abstract: Traditional mobile wireless network mainly design focuses on ubiquitous access and large capacity. However, as energy saving and environmental protection become global demands and inevitable trends, wireless researchers and engineers need to shift their focus to energy-efficiency-oriented design, that is, green radio. In this article, we propose a framework for green radio research and integrate the fundamental issues that are currently scattered. The skeleton of the framework consists of four fundamental tradeoffs: deployment efficiency-energy efficiency, spectrum efficiency-energy efficiency, bandwidth-power, and delay-power. With the help of the four fundamental trade-offs, we demonstrate that key network performance/cost indicators are all strung together.

1,081 citations


Journal ArticleDOI
TL;DR: The current progress of terahertz-wave technologies related to communications applications are examined and some issues that need to be considered for the future of THz communications are discussed.
Abstract: Recent changes in how people consume multimedia services are causing an explosive increase in mobile traffic. With more and more people using wireless networks, the demand for the ultra-fast wireless communications systems is increasing. To date, this demand has been accommodated with advanced modulation schemes and signal-processing technologies at microwave frequencies. However, without increasing the carrier frequencies for more spectral resources, it may be quite difficult to keep up with the needs of users. Although there are several alternative bands, recent advances in terahertz-wave (THz-wave) technologies have attracted attention due to the huge bandwidth of THz waves and its potential for use in wireless communications. The frequency band of 275 ~ 3000 GHz , which has not been allocated for specific uses yet, is especially of interest for future wireless systems with data rates of 10 Gb/s or higher. Although THz communications is still in a very early stage of development, there have been lots of reports that show its potential. In this review, we will examine the current progress of THz-wave technologies related to communications applications and discuss some issues that need to be considered for the future of THz communications.

1,072 citations


Posted Content
TL;DR: This article proposes a framework for green radio research and integrates the fundamental issues that are currently scattered and demonstrates that key network performance/cost indicators are all strung together.
Abstract: Traditional design of mobile wireless networks mainly focuses on ubiquitous access and large capacity. However, as energy saving and environmental protection become a global demand and inevitable trend, wireless researchers and engineers need to shift their focus to energy-efficiency oriented design, that is, green radio. In this paper, we propose a framework for green radio research and integrate the fundamental issues that are currently scattered. The skeleton of the framework consists of four fundamental tradeoffs: deployment efficiency - energy efficiency tradeoff, spectrum efficiency - energy efficiency tradeoff, bandwidth - power tradeoff, and delay - power tradeoff. With the help of the four fundamental tradeoffs, we demonstrate that key network performance/cost indicators are all stringed together.

1,050 citations


Journal ArticleDOI
TL;DR: An exact characterization of the capacity of a network with nodes connected by deterministic channels is obtained, a natural generalization of the celebrated max-flow min-cut theorem for wired networks.
Abstract: In a wireless network with a single source and a single destination and an arbitrary number of relay nodes, what is the maximum rate of information flow achievable? We make progress on this long standing problem through a two-step approach. First, we propose a deterministic channel model which captures the key wireless properties of signal strength, broadcast and superposition. We obtain an exact characterization of the capacity of a network with nodes connected by such deterministic channels. This result is a natural generalization of the celebrated max-flow min-cut theorem for wired networks. Second, we use the insights obtained from the deterministic analysis to design a new quantize-map-and-forward scheme for Gaussian networks. In this scheme, each relay quantizes the received signal at the noise level and maps it to a random Gaussian codeword for forwarding, and the final destination decodes the source's message based on the received signal. We show that, in contrast to existing schemes, this scheme can achieve the cut-set upper bound to within a gap which is independent of the channel parameters. In the case of the relay channel with a single relay as well as the two-relay Gaussian diamond network, the gap is 1 bit/s/Hz. Moreover, the scheme is universal in the sense that the relays need no knowledge of the values of the channel parameters to (approximately) achieve the rate supportable by the network. We also present extensions of the results to multicast networks, half-duplex networks, and ergodic networks.

1,034 citations


Journal ArticleDOI
TL;DR: This paper provides a systematic overview on CR networking and communications by looking at the key functions of the physical, medium access control (MAC), and network layers involved in a CR design and how these layers are crossly related.
Abstract: Cognitive radio (CR) is the enabling technology for supporting dynamic spectrum access: the policy that addresses the spectrum scarcity problem that is encountered in many countries. Thus, CR is widely regarded as one of the most promising technologies for future wireless communications. To make radios and wireless networks truly cognitive, however, is by no means a simple task, and it requires collaborative effort from various research communities, including communications theory, networking engineering, signal processing, game theory, software-hardware joint design, and reconfigurable antenna and radio-frequency design. In this paper, we provide a systematic overview on CR networking and communications by looking at the key functions of the physical (PHY), medium access control (MAC), and network layers involved in a CR design and how these layers are crossly related. In particular, for the PHY layer, we will address signal processing techniques for spectrum sensing, cooperative spectrum sensing, and transceiver design for cognitive spectrum access. For the MAC layer, we review sensing scheduling schemes, sensing-access tradeoff design, spectrum-aware access MAC, and CR MAC protocols. In the network layer, cognitive radio network (CRN) tomography, spectrum-aware routing, and quality-of-service (QoS) control will be addressed. Emerging CRNs that are actively developed by various standardization committees and spectrum-sharing economics will also be reviewed. Finally, we point out several open questions and challenges that are related to the CRN design.

980 citations


Posted Content
TL;DR: This paper considers optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and introduces a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

950 citations


Journal ArticleDOI
18 Jul 2011
TL;DR: An overview of the technological advances in millimeter-wave circuit components, antennas, and propagation that will soon allow 60-GHz transceivers to provide multigigabit per second (multi-Gb/s) wireless communication data transfers in the consumer marketplace is presented.
Abstract: This tutorial presents an overview of the technological advances in millimeter-wave (mm-wave) circuit components, antennas, and propagation that will soon allow 60-GHz transceivers to provide multigigabit per second (multi-Gb/s) wireless communication data transfers in the consumer marketplace. Our goal is to help engineers understand the convergence of communications, circuits, and antennas, as the emerging world of subterahertz and terahertz wireless communications will require understanding at the intersections of these areas. This paper covers trends and recent accomplishments in a wide range of circuits and systems topics that must be understood to create massively broadband wireless communication systems of the future. In this paper, we present some evolving applications of massively broadband wireless communications, and use tables and graphs to show research progress from the literature on various radio system components, including on-chip and in-package antennas, radio-frequency (RF) power amplifiers (PAs), low-noise amplifiers (LNAs), voltage-controlled oscillators (VCOs), mixers, and analog-to-digital converters (ADCs). We focus primarily on silicon-based technologies, as these provide the best means of implementing very low-cost, highly integrated 60-GHz mm-wave circuits. In addition, the paper illuminates characterization techniques that are required to competently design and fabricate mm-wave devices in silicon, and illustrates effects of the 60-GHz RF propagation channel for both in-building and outdoor use. The paper concludes with an overview of the standardization and commercialization efforts for 60-GHz multi-Gb/s devices, and presents a novel way to compare the data rate versus power efficiency for future broadband devices.

Journal ArticleDOI
27 May 2011
TL;DR: Approaches to the design of intelligent waveforms, that are suitable for simultaneously performing both data transmission and radar sensing, are proposed, based on classical phase-coded waveforms utilized in wireless communications.
Abstract: Since traditional radar signals are “unintelligent,” regarding the amount of information they convey on the bandwidth they occupy, a joint radar and wireless communication system would constitute a unique platform for future intelligent transportation networks effecting the essential tasks of environmental sensing and the allocation of ad-hoc communication links, in terms of both spectrum efficiency and cost-effectiveness. In this paper, approaches to the design of intelligent waveforms, that are suitable for simultaneously performing both data transmission and radar sensing, are proposed. The approach is based on classical phase-coded waveforms utilized in wireless communications. In particular, requirements that allow for employing such signals for radar measurements with high dynamic range are investigated. Also, a variety of possible radar processing algorithms are discussed. Moreover, the applicability of multiple antenna techniques for direction-of-arrival estimation is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of complete “RadCom” systems, demonstrating the practical feasibility of integrated communications and radar applications.

Book
07 Oct 2011
TL;DR: This book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks.
Abstract: Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents and spectral analysis methods for statistical inference are all covered from a unique engineering perspective Detailed mathematical derivations are presented throughout, with thorough explanation of the key results and all fundamental lemmas required for the reader to derive similar calculus on their own These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results

Book
20 Oct 2011
TL;DR: This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks and covers a wide range of techniques for modeling, designing and analysing communication networks using game theory, as well as state of theart distributed design techniques.
Abstract: This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. Future networks will rely on autonomous and distributed architectures to improve the efficiency and flexibility of mobile applications, and game theory provides the ideal framework for designing efficient and robust distributed algorithms. This book enables readers to develop a solid understanding of game theory, its applications and its use as an effective tool for addressing wireless communication and networking problems. The key results and tools of game theory are covered, as are various real-world technologies including 3G networks, wireless LANs, sensor networks, dynamic spectrum access and cognitive networks. The book also covers a wide range of techniques for modeling, designing and analysing communication networks using game theory, as well as state-of-the-art distributed design techniques. This is an ideal resource for communications engineers, researchers, and graduate and undergraduate students.

Journal ArticleDOI
TL;DR: Basic concepts of energy-efficient communications are first introduced and then existing fundamental works and advanced techniques for energy efficiency are summarized, including information-theoretic analysis, OFDMA networks, MIMO techniques, relay transmission, and resource allocation for signaling.
Abstract: With explosive growth of high-data-rate applications, more and more energy is consumed in wireless networks to guarantee quality of service. Therefore, energy-efficient communications have been paid increasing attention under the background of limited energy resource and environmental- friendly transmission behaviors. In this article, basic concepts of energy-efficient communications are first introduced and then existing fundamental works and advanced techniques for energy efficiency are summarized, including information-theoretic analysis, OFDMA networks, MIMO techniques, relay transmission, and resource allocation for signaling. Some valuable topics in energy-efficient design are also identified for future research.

Posted Content
TL;DR: In this paper, the authors studied a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas.
Abstract: Wireless power transfer (WPT) is a promising new solution to provide convenient and perpetual energy supplies to wireless networks. In practice, WPT is implementable by various technologies such as inductive coupling, magnetic resonate coupling, and electromagnetic (EM) radiation, for short-/mid-/long-range applications, respectively. In this paper, we consider the EM or radio signal enabled WPT in particular. Since radio signals can carry energy as well as information at the same time, a unified study on simultaneous wireless information and power transfer (SWIPT) is pursued. Specifically, this paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas. Two scenarios are examined, in which the information receiver and energy receiver are separated and see different MIMO channels from the transmitter, or co-located and see the identical MIMO channel from the transmitter. For the case of separated receivers, we derive the optimal transmission strategy to achieve different tradeoffs for maximal information rate versus energy transfer, which are characterized by the boundary of a so-called rate-energy (R-E) region. For the case of co-located receivers, we show an outer bound for the achievable R-E region due to the potential limitation that practical energy harvesting receivers are not yet able to decode information directly. Under this constraint, we investigate two practical designs for the co-located receiver case, namely time switching and power splitting, and characterize their achievable R-E regions in comparison to the outer bound.

Proceedings ArticleDOI
27 Jun 2011
TL;DR: This work proposes a more comprehensive metric, the average system information age, which captures the requirement of emerging applications to maintain current state information from all other nearby nodes, and designs an application-layer broadcast rate adaptation algorithm that effectively adapts the messaging rates and minimizes the system age.
Abstract: Emerging applications rely on wireless broadcast to disseminate time-critical information. For example, vehicular networks may exchange vehicle position and velocity information to enable safety applications. The number of nodes in one-hop communication range in such networks can be very large, leading to congestion and undesirable levels of packet collisions. Earlier work has examined such broadcasting protocols primarily from a MAC perspective and focused on selective aspects such as packet error rate. In this work, we propose a more comprehensive metric, the average system information age, which captures the requirement of such applications to maintain current state information from all other nearby nodes. We show that information age is minimized at an optimal operating point that lies between the extremes of maximum throughput and minimum delay. Further, while age can be minimized by saturating the MAC and setting the CW size to its throughput-optimal value, the same cannot be achieved without changes in existing hardware. Also, via simulations we show that simple contention window size adaptations like increasing or decreasing the window size are unsuitable for reducing age. This motivates our design of an application-layer broadcast rate adaptation algorithm. It uses local decisions at nodes in the network to adapt their messaging rate to keep the system age to a minimum. Our simulations and experiments with 300 ORBIT nodes show that the algorithm effectively adapts the messaging rates and minimizes the system age.

Journal ArticleDOI
TL;DR: Spatial Modulation is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments.
Abstract: Multiple-antenna techniques constitute a key technology for modern wireless communications, which trade-off superior error performance and higher data rates for increased system complexity and cost. Among the many transmission principles that exploit multiple-antenna at either the transmitter, the receiver, or both, Spatial Modulation (SM) is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments. SM is an entirely new modulation concept that exploits the uniqueness and randomness properties of the wireless channel for communication. This is achieved by adopting a simple but effective coding mechanism that establishes a one-to-one mapping between blocks of information bits to be transmitted and the spatial positions of the transmit-antenna in the antenna-array. In this article, we summarize the latest research achievements and outline some relevant open research issues of this recently proposed transmission technique.

MonographDOI
02 Jun 2011
TL;DR: This title provides detailed coverage of UWB positioning systems, offering comprehensive treatment of signal and receiver design for ranging, range estimation techniques, theoretical performance bounds, ranging algorithms and protocols.
Abstract: Position estimation of wireless devices has many applications in short-range networks. Ultra-wideband (UWB) signals provide accurate positioning capabilities that can be harnessed in wireless systems to realize these applications. This title provides detailed coverage of UWB positioning systems, offering comprehensive treatment of signal and receiver design for ranging, range estimation techniques, theoretical performance bounds, ranging algorithms and protocols. Beginning with a discussion of the potential applications of wireless positioning, and investigating UWB signals for such applications, later chapters establish a signal processing framework for analyzing UWB positioning and ranging systems. The recent IEEE 802.15.4a standard related to UWB is also studied in detail. Each chapter contains examples, problems and Matlab scripts to help readers grasp key concepts. This is an ideal text for graduate students and researchers in electrical and computer engineering, and practitioners in the communications industry, particularly those in wireless communications.

Patent
17 Aug 2011
TL;DR: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy as mentioned in this paper, where the microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters.
Abstract: The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power

Patent
08 Apr 2011
TL;DR: In this paper, a wireless power charging apparatus includes an antenna including first and second orthogonal magnetic elements for detecting a horizontal component of a magnetic field generated from a second charging base antenna.
Abstract: Exemplary embodiments are directed to wireless charging and wireless power alignment of wireless power antennas associated with a vehicle. A wireless power charging apparatus includes an antenna including first and second orthogonal magnetic elements for detecting a horizontal component of a magnetic field generated from a second charging base antenna. A processor determines a directional vector between the antennas.

Patent
30 Mar 2011
TL;DR: This paper considers the case of two cognitive users and shows how the inherent asymmetry in the network can be exploited to increase the probability of detection and proposes a practical algorithm which allows cooperation in random networks.
Abstract: Providing for cooperative sensing in wireless communications that improves user terminal throughput and minimizes interference is described herein. According to some aspects, a network entity, such as a base station, can assign a set of SUTs to measure a subset of wireless channels in a target frequency according to a cooperative sensing arrangement. In particular aspects, this assignment can be implemented so as to increase or maximize potential traffic throughput of those SUTs within the target frequency, in a given wireless time slot. In this manner, cooperative sensing can be structured so as to provide more efficient traffic communications within the target frequency.

Journal ArticleDOI
TL;DR: An investigation of the application of M2M communications in the smart grid with numerical results show that the proposed optimal traffic concentration can minimize the cost of HEMS.
Abstract: Machine-to-machine (M2M) communications have emerged as a cutting edge technology for next-generation communications, and are undergoing rapid development and inspiring numerous applications. This article presents an investigation of the application of M2M communications in the smart grid. First, an overview of M2M communications is given. The enabling technologies and open research issues of M2M communications are also discussed. Then we address the network design issue of M2M communications for a home energy management system (HEMS) in the smart grid. The network architecture for HEMS to collect status and power consumption demand from home appliances is introduced. Then the optimal HEMS traffic concentration is presented and formulated as the optimal cluster formation. A dynamic programming algorithm is applied to obtain the optimal solution. The numerical results show that the proposed optimal traffic concentration can minimize the cost of HEMS.

Proceedings ArticleDOI
10 Apr 2011
TL;DR: This paper investigates the operation of a sensor network under this new enabling energy transfer technology and proves that the optimal traveling path for the WCV is the shortest Hamiltonian cycle and provides a number of important properties.
Abstract: Traditional wireless sensor networks are constrained by limited battery energy. Thus, finite network lifetime is widely regarded as a fundamental performance bottleneck. Recent breakthrough in the area of wireless energy transfer offers the potential of removing such performance bottleneck, i.e., allowing a sensor network remain operational forever. In this paper, we investigate the operation of a sensor network under this new enabling energy transfer technology. We consider the scenario of a mobile charging vehicle periodically traveling inside the sensor network and charging each sensor node's battery wirelessly. We introduce the concept of renewable energy cycle and offer both necessary and sufficient conditions. We study an optimization problem, with the objective of maximizing the ratio of the wireless charging vehicle (WCV)'s vacation time over the cycle time. For this problem, we prove that the optimal traveling path for the WCV is the shortest Hamiltonian cycle and provide a number of important properties. Subsequently, we develop a near-optimal solution and prove its performance guarantee.

Proceedings ArticleDOI
15 Aug 2011
TL;DR: This paper explores the use of 60 GHz wireless technology to relieve hotspots in oversubscribed data center (DC) networks and presents a design that uses DC traffic levels to select and adds flyways to the wired DC network.
Abstract: The 60 GHz wireless technology that is now emerging has the potential to provide dense and extremely fast connectivity at low cost. In this paper, we explore its use to relieve hotspots in oversubscribed data center (DC) networks. By experimenting with prototype equipment, we show that the DC environment is well suited to a deployment of 60GHz links contrary to concerns about interference and link reliability. Using directional antennas, many wireless links can run concurrently at multi-Gbps rates on top-of-rack (ToR) switches. The wired DC network can be used to sidestep several common wireless problems. By analyzing production traces of DC traffic for four real applications, we show that adding a small amount of network capacity in the form of wireless flyways to the wired DC network can improve performance. However, to be of significant value, we find that one hop indirect routing is needed. Informed by our 60GHz experiments and DC traffic analysis, we present a design that uses DC traffic levels to select and adds flyways to the wired DC network. Trace-driven evaluations show that network-limited DC applications with predictable traffic workloads running on a 1:2 oversubscribed network can be sped up by 45% in 95% of the cases, with just one wireless device per ToR switch. With two devices, in 40% of the cases, the performance is identical to that of a non-oversubscribed network.

Proceedings ArticleDOI
27 Jun 2011
TL;DR: This paper investigates the application of CS to data collection in wireless sensor networks, and aims at minimizing the network energy consumption through joint routing and compressed aggregation, and proposes a mixed-integer programming formulation along with a greedy heuristic.
Abstract: As a burgeoning technique for signal processing, compressed sensing (CS) is being increasingly applied to wireless communications. However, little work is done to apply CS to multihop networking scenarios. In this paper, we investigate the application of CS to data collection in wireless sensor networks, and we aim at minimizing the network energy consumption through joint routing and compressed aggregation. We first characterize the optimal solution to this optimization problem, then we prove its NP-completeness. We further propose a mixed-integer programming formulation along with a greedy heuristic, from which both the optimal (for small scale problems) and the near-optimal (for large scale problems) aggregation trees are obtained. Our results validate the efficacy of the greedy heuristics, as well as the great improvement in energy efficiency through our joint routing and aggregation scheme.


Journal ArticleDOI
TL;DR: A sufficient condition for generic multi-channel power control to have a unique equilibrium in frequency-selective channels is discovered and the proposed scheme improves both energy efficiency and spectral efficiency in an interference-limited multi-cell cellular network.
Abstract: Power optimization techniques are becoming increasingly important in wireless system design since battery technology has not kept up with the demand of mobile devices. They are also critical to interference management in wireless systems because interference usually results from both aggressive spectral reuse and high power transmission and severely limits system performance. In this paper, we develop an energy-efficient power optimization scheme for interference-limited wireless communications. We consider both circuit and transmission powers and focus on energy efficiency over throughput. We first investigate a non-cooperative game for energy-efficient power optimization in frequency-selective channels and reveal the conditions of the existence and uniqueness of the equilibrium for this game. Most importantly, we discover a sufficient condition for generic multi-channel power control to have a unique equilibrium in frequency-selective channels. Then we study the tradeoff between energy efficiency and spectral efficiency and show by simulation results that the proposed scheme improves both energy efficiency and spectral efficiency in an interference-limited multi-cell cellular network.

Patent
22 Aug 2011
TL;DR: An encoded information reading (EIR) terminal can comprise a microprocessor, a memory communicatively coupled to the micro processor, an EIR device, a multi-band antenna, and a wireless communication interface as discussed by the authors.
Abstract: An encoded information reading (EIR) terminal can comprise a microprocessor, a memory communicatively coupled to the microprocessor, an EIR device, a multi-band antenna, and a wireless communication interface. The EIR reading device can be provided by a bar code reading device, an RFID reading device, and/or a card reading device. The EIR device can be configured to output raw message data comprising an encoded message and/or output decoded message data corresponding to an encoded message. The wireless communication interface can be configured to support at least two wireless communication protocols. The multi-band antenna can be configured to simultaneously receive two or more radio signals in two or more frequency regulatory domains. The EIR terminal can be configured to dynamically select a wireless communication network and/or a wireless communication protocol by optimizing a value of a wireless communication protocol selection criterion which can be based on said two or more radio signals.

Journal ArticleDOI
02 May 2011-Sensors
TL;DR: According to the analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements and is shown to be suitable for higher security WSNs.
Abstract: User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das’ protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.