scispace - formally typeset
Search or ask a question

Showing papers on "Wireless published in 2021"


Journal ArticleDOI
TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Abstract: Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal propagation in wireless networks. By smartly tuning the signal reflection via a large number of low-cost passive reflecting elements, IRS is capable of dynamically altering wireless channels to enhance the communication performance. It is thus expected that the new IRS-aided hybrid wireless network comprising both active and passive components will be highly promising to achieve a sustainable capacity growth cost-effectively in the future. Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks, such as reflection optimization, channel estimation, and deployment from communication design perspectives. In this paper, we provide a tutorial overview of IRS-aided wireless communications to address the above issues, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks. Moreover, we highlight important directions worthy of further investigation in future work.

1,325 citations


Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations


Journal ArticleDOI
TL;DR: In this paper, a joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm.
Abstract: In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.

713 citations


Journal ArticleDOI
TL;DR: The proposed models, which are first validated through extensive simulation results, reveal the relationships between the free-space path loss of RIS-assisted wireless communications and the distances from the transmitter/receiver to the RIS, the size of the ris, the near-field/far-field effects of the RIS and the radiation patterns of antennas and unit cells.
Abstract: Reconfigurable intelligent surfaces (RISs) comprised of tunable unit cells have recently drawn significant attention due to their superior capability in manipulating electromagnetic waves. In particular, RIS-assisted wireless communications have the great potential to achieve significant performance improvement and coverage enhancement in a cost-effective and energy-efficient manner, by properly programming the reflection coefficients of the unit cells of RISs. In this article, free-space path loss models for RIS-assisted wireless communications are developed for different scenarios by studying the physics and electromagnetic nature of RISs. The proposed models, which are first validated through extensive simulation results, reveal the relationships between the free-space path loss of RIS-assisted wireless communications and the distances from the transmitter/receiver to the RIS, the size of the RIS, the near-field/far-field effects of the RIS, and the radiation patterns of antennas and unit cells. In addition, three fabricated RISs (metasurfaces) are utilized to further corroborate the theoretical findings through experimental measurements conducted in a microwave anechoic chamber. The measurement results match well with the modeling results, thus validating the proposed free-space path loss models for RISs, which may pave the way for further theoretical studies and practical applications in this field.

627 citations


Journal ArticleDOI
TL;DR: In this article, the authors aim to answer four fundmental questions: 1) Why do we need RISs? 2) What is an RIS? 3] What are RIS's applications? 4) What are the relevant challenges and future research directions?
Abstract: Reconfigurable intelligent surfaces (RISs) or intelligent reflecting surfaces (IRSs) are regarded as one of the most promising and revolutionizing techniques for enhancing the spectrum and/ or energy efficiency of wireless systems. These devices are capable of reconfiguring the wireless propagation environment by carefully tuning the phase shifts of a large number of low-cost passive reflecting elements. In this article, we aim to answer four fundmental questions: 1) Why do we need RISs? 2) What is an RIS? 3) What are RIS's applications? 4) What are the relevant challenges and future research directions? In response, eight promising research directions are pointed out.

402 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT, and highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Abstract: The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.

305 citations


Journal ArticleDOI
11 Jan 2021
TL;DR: In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization.
Abstract: Ever since the deployment of the first-generation of mobile telecommunications, wireless communication technology has evolved at a dramatically fast pace over the past four decades. The upcoming fifth-generation (5G) holds a great promise in providing an ultra-fast data rate, a very low latency, and a significantly improved spectral efficiency by exploiting the millimeter-wave spectrum for the first time in mobile communication infrastructures. In the years beyond 2030, newly emerged data-hungry applications and the greatly expanded wireless network will call for the sixth-generation (6G) communication that represents a significant upgrade from the 5G network – covering almost the entire surface of the earth and the near outer space. In both the 5G and future 6G networks, millimeter-wave technologies will play an important role in accomplishing the envisioned network performance and communication tasks. In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization. The requirements of each part for future 6G communications are also briefly discussed.

278 citations


Journal ArticleDOI
TL;DR: A channel estimation framework based on the parallel factor decomposition to unfold the resulting cascaded channel model is proposed and it is demonstrated that the sum rate using the estimated channels always reach that of perfect channels under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms.
Abstract: Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks due to their fast and low-power configuration, which has increased potential in enabling massive connectivity and low-latency communications. Accurate and low-overhead channel estimation in RIS-based systems is one of the most critical challenges due to the usually large number of RIS unit elements and their distinctive hardware constraints. In this paper, we focus on the uplink of a RIS-empowered multi-user Multiple Input Single Output (MISO) uplink communication systems and propose a channel estimation framework based on the parallel factor decomposition to unfold the resulting cascaded channel model. We present two iterative estimation algorithms for the channels between the base station and RIS, as well as the channels between RIS and users. One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels from the estimated vectors. To theoretically assess the performance of the ALS-based algorithm, we derived its estimation Cramer-Rao Bound (CRB). We also discuss the downlink achievable sum rate computation with estimated channels and different precoding schemes for the base station. Our extensive simulation results show that our algorithms outperform benchmark schemes and that the ALS technique achieves the CRB. It is also demonstrated that the sum rate using the estimated channels always reach that of perfect channels under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms.

260 citations


Journal ArticleDOI
TL;DR: A two-timescale channel estimation framework to exploit the property that the BS-RIS channel is high-dimensional but quasi-static, while the RIS-UE channel is mobile but low-dimensional is proposed.
Abstract: Channel estimation is challenging for the reconfigurable intelligent surface (RIS)-aided wireless communications. Since the number of coefficients of the cascaded channel among the base station (BS), the RIS, and the user equipment (UE), is the product of the number of BS antennas, the number of RIS elements, and the number of UEs, the pilot overhead can be prohibitively high. In this paper, we propose a two-timescale channel estimation framework to exploit the property that the BS-RIS channel is high-dimensional but quasi-static, while the RIS-UE channel is mobile but low-dimensional. Specifically, to estimate the quasi-static BS-RIS channel, we propose a dual-link pilot transmission scheme, where the BS transmits downlink pilots and receives uplink pilots reflected by the RIS. Then, we propose a coordinate descent-based algorithm to recover the BS-RIS channel. Since the quasi-static BS-RIS channel is estimated less frequently than the mobile channel is, the average pilot overhead can be reduced from a long-term perspective. Although the mobile RIS-UE channel has to be frequently estimated in a small timescale, the associated pilot overhead is low thanks to its low dimension. Simulation results show that the proposed two-timescale channel estimation framework can achieve accurate channel estimation with low pilot overhead.

236 citations


Book
01 Sep 2021
TL;DR: In this paper, on-body propagation modeling has been investigated applying various numerical computational techniques, and propagation measurements with body-worn antennas have been carried out at 2.4 GHz inside and outside an anechoic chamber respectively for narrowband communication channel characterisation.
Abstract: In this paper, on-body propagation modelling has been investigated applying various numerical computational techniques. Propagation measurements with body-worn antennas have been carried out at 2.4 GHz inside and outside an anechoic chamber respectively for narrowband communication channel characterisation. Both simulation and measurement results have been also obtained at the UWB (ultra wide-band) band.

226 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a hybrid beamforming scheme for the multi-hop RIS-assisted communication networks to improve the coverage range at the TeraHertz-band frequencies.
Abstract: Wireless communication in the TeraHertz band (0.1–10 THz) is envisioned as one of the key enabling technologies for the future sixth generation (6G) wireless communication systems scaled up beyond massive multiple input multiple output (Massive-MIMO) technology. However, very high propagation attenuations and molecular absorptions of THz frequencies often limit the signal transmission distance and coverage range. Benefited from the recent breakthrough on the reconfigurable intelligent surfaces (RIS) for realizing smart radio propagation environment, we propose a novel hybrid beamforming scheme for the multi-hop RIS-assisted communication networks to improve the coverage range at THz-band frequencies. Particularly, multiple passive and controllable RISs are deployed to assist the transmissions between the base station (BS) and multiple single-antenna users. We investigate the joint design of digital beamforming matrix at the BS and analog beamforming matrices at the RISs, by leveraging the recent advances in deep reinforcement learning (DRL) to combat the propagation loss. To improve the convergence of the proposed DRL-based algorithm, two algorithms are then designed to initialize the digital beamforming and the analog beamforming matrices utilizing the alternating optimization technique. Simulation results show that our proposed scheme is able to improve 50% more coverage range of THz communications compared with the benchmarks. Furthermore, it is also shown that our proposed DRL-based method is a state-of-the-art method to solve the NP-hard beamforming problem, especially when the signals at RIS-assisted THz communication networks experience multiple hops.

Journal ArticleDOI
TL;DR: In this article, a DRL-based secure beamforming approach was proposed to achieve the optimal beamforming policy against eavesdroppers in dynamic environments, and a modified postdecision state (PDS) and prioritized experience replay (PER) scheme was utilized to enhance the learning efficiency and secrecy performance.
Abstract: In this paper, we study an intelligent reflecting surface (IRS)-aided wireless secure communication system, where an IRS is deployed to adjust its reflecting elements to secure the communication of multiple legitimate users in the presence of multiple eavesdroppers. Aiming to improve the system secrecy rate, a design problem for jointly optimizing the base station (BS)’s beamforming and the IRS’s reflecting beamforming is formulated considering different quality of service (QoS) requirements and time-varying channel conditions. As the system is highly dynamic and complex, and it is challenging to address the non-convex optimization problem, a novel deep reinforcement learning (DRL)-based secure beamforming approach is firstly proposed to achieve the optimal beamforming policy against eavesdroppers in dynamic environments. Furthermore, post-decision state (PDS) and prioritized experience replay (PER) schemes are utilized to enhance the learning efficiency and secrecy performance. Specifically, a modified PDS scheme is presented to trace the channel dynamic and adjust the beamforming policy against channel uncertainty accordingly. Simulation results demonstrate that the proposed deep PDS-PER learning based secure beamforming approach can significantly improve the system secrecy rate and QoS satisfaction probability in IRS-aided secure communication systems.

Journal ArticleDOI
TL;DR: A brief overview of the added features and key performance indicators of 5G NR is presented and a next-generation wireless communication architecture that acts as the platform for migration towards beyond 5G/6G networks is proposed.
Abstract: Nowadays, 5G is in its initial phase of commercialization. The 5G network will revolutionize the existing wireless network with its enhanced capabilities and novel features. 5G New Radio (5G NR), referred to as the global standardization of 5G, is presently under the $3^{\mathrm {rd}}$ Generation Partnership Project (3GPP) and can be operable over the wide range of frequency bands from less than 6GHz to mmWave (100GHz). 3GPP mainly focuses on the three major use cases of 5G NR that are comprised of Ultra-Reliable and Low Latency Communication (uRLLC), Massive Machine Type Communication (mMTC), Enhanced Mobile Broadband (eMBB). For meeting the targets of 5G NR, multiple features like scalable numerology, flexible spectrum, forward compatibility, and ultra-lean design are added as compared to the LTE systems. This paper presents a brief overview of the added features and key performance indicators of 5G NR. The issues related to the adaptation of higher modulation schemes and inter-RAT handover synchronization are well addressed in this paper. With the consideration of these challenges, a next-generation wireless communication architecture is proposed. The architecture acts as the platform for migration towards beyond 5G/6G networks. Along with this, various technologies and applications of 6G networks are also overviewed in this paper. 6G network will incorporate Artificial intelligence (AI) based services, edge computing, quantum computing, optical wireless communication, hybrid access, and tactile services. For enabling these diverse services, a virtualized network slicing based architecture of 6G is proposed. Various ongoing projects on 6G and its technologies are also listed in this paper.

Journal ArticleDOI
TL;DR: Numerical results demonstrate that IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases, and jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS.
Abstract: Cognitive radio (CR) is an effective solution to improve the spectral efficiency (SE) of wireless communications by allowing the secondary users (SUs) to share spectrum with primary users (PUs). Meanwhile, intelligent reflecting surface (IRS), also known as reconfigurable intelligent surface (RIS), has been recently proposed as a promising approach to enhance energy efficiency (EE) of wireless communication systems through intelligently reconfiguring the channel environment. To improve both SE and EE, in this paper, we introduce multiple IRSs to a downlink multiple-input single-output (MISO) CR system, in which a single SU coexists with a primary network with multiple PU receivers (PU-RXs). Our design objective is to maximize the achievable rate of SU subject to a total transmit power constraint on the SU transmitter (SU-TX) and interference temperature constraints on the PU-RXs, by jointly optimizing the beamforming at SU-TX and the reflecting coefficients at each IRS. Both perfect and imperfect channel state information (CSI) cases are considered in the optimization. Numerical results demonstrate that IRS can significantly improve the achievable rate of SU under both perfect and imperfect CSI cases.

Journal ArticleDOI
TL;DR: In this article, the authors describe a RIS prototype consisting of 1100 controllable elements working at 5.8 GHz band and propose an efficient algorithm for configuring the RIS over the air by exploiting the geometrical array properties and a practical receiver-RIS feedback link.
Abstract: The prospects of using a Reconfigurable Intelligent Surface (RIS) to aid wireless communication systems have recently received much attention from academia and industry. Most papers make theoretical studies based on elementary models, while the prototyping of RIS-aided wireless communication and real-world field trials are scarce. In this paper, we describe a new RIS prototype consisting of 1100 controllable elements working at 5.8 GHz band. We propose an efficient algorithm for configuring the RIS over the air by exploiting the geometrical array properties and a practical receiver-RIS feedback link. In our indoor test, where the transmitter and receiver are separated by a 30 cm thick concrete wall, our RIS prototype provides a 26 dB power gain compared to the baseline case where the RIS is replaced by a copper plate. A 27 dB power gain was observed in the short-distance outdoor measurement. We also carried out long-distance measurements and successfully transmitted a 32 Mbps data stream over 500 m. A 1080p video was live-streamed and it only played smoothly when the RIS was utilized. The power consumption of the RIS is around 1 W. Our paper is vivid proof that the RIS is a very promising technology for future wireless communications.

Journal ArticleDOI
TL;DR: Three fundamental physical-layer challenges for the incorporation of RISs into wireless networks, namely, channel state information acquisition, passive information transfer, and low-complexity robust system design are focused on.
Abstract: Reconfigurable intelligent surfaces (RISs) are regarded as a promising emerging hardware technology to improve the spectrum and energy efficiency of wireless networks by artificially reconfiguring the propagation environment of electromagnetic waves. Due to the unique advantages in enhancing wireless channel capacity, RISs have recently become a hot research topic. In this article, we focus on three fundamental physical-layer challenges for the incorporation of RISs into wireless networks, namely, channel state information acquisition, passive information transfer, and low-complexity robust system design. We summarize the state-of-the-art solutions and explore potential research directions. Furthermore, we discuss other promising research directions of RISs, including edge intelligence and physical-layer security.

Journal ArticleDOI
TL;DR: In this paper, a physics-based model and a scalable optimization framework for large RISs were developed to optimize a large number of sub-wavelength RIS elements for online transmission.
Abstract: Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells.

Journal ArticleDOI
01 Mar 2021
TL;DR: In this article, a dual-channel wireless communication system based on a two-bit space-time-coding digital metasurface was proposed to transmit two different pictures to two users simultaneously in real time.
Abstract: Digitally programmable metasurfaces are of potential use in wireless multiplexing techniques because they can encode and transmit information without using traditional radio-frequency components such as antennas or mixers. Space–time-coding digital metasurfaces can, in particular, manipulate the propagation direction and harmonic power distribution of electromagnetic waves, making them suitable for space- and frequency-division multiplexing. However, while digital metasurfaces have been used for wireless communication, these systems could implement signal modulation only in the time domain. Here, we report a wireless communication scheme that uses space–time-coding digital metasurfaces to implement both space- and frequency-division multiplexing. By encoding space–time-coding matrices through multiple channels, digital messages can be directly transmitted to different users at different locations simultaneously, without the need for digital-to-analogue conversion and mixing processes. To illustrate this approach, we have built a dual-channel wireless communication system based on a two-bit space–time-coding digital metasurface and use it to transmit two different pictures to two users simultaneously in real time. Space–time-coding digital metasurfaces can be used to implement secure and low-cost space- and frequency-division multiplexing in a dual-channel wireless communication system.

Journal ArticleDOI
TL;DR: This paper investigates a novel unmanned aerial vehicles (UAVs) secure communication system with the assistance of reconfigurable intelligent surfaces (RISs), where an UAV and a ground user communicate with each other, while an eavesdropper tends to wiretap their information.
Abstract: This paper investigates a novel unmanned aerial vehicles (UAVs) secure communication system with the assistance of reconfigurable intelligent surfaces (RISs), where a UAV and a ground user communicate with each other, while an eavesdropper tends to wiretap their information. Due to the limited capacity of UAVs, an RIS is applied to further improve the quality of the secure communication. The time division multiple access (TDMA) protocol is applied for the communications between the UAV and the ground user, namely, the downlink (DL) and the uplink (UL) communications. In particular, the channel state information (CSI) of the eavesdropping channels is assumed to be imperfect. We aim to maximize the average worst-case secrecy rate by the robust joint design of the UAV’s trajectory, RIS’s passive beamforming, and transmit power of the legitimate transmitters. However, it is challenging to solve the joint UL/DL optimization problem due to its non-convexity. Therefore, we develop an efficient algorithm based on the alternating optimization (AO) technique. Specifically, the formulated problem is divided into three sub-problems, and the successive convex approximation (SCA), $\mathcal {S}$ -Procedure, and semidefinite relaxation (SDR) are applied to tackle these non-convex sub-problems. Numerical results demonstrate that the proposed algorithm can considerably improve the average secrecy rate compared with the benchmark algorithms, and also confirm the robustness of the proposed algorithm.

Journal ArticleDOI
TL;DR: This article performs a comprehensive review of the TL algorithms used in different wireless communication fields, such as base stations/access points switching, indoor wireless localization and intrusion detection in wireless networks, etc.
Abstract: In the coming 6G communications, network densification, high throughput, positioning accuracy, energy efficiency, and many other key performance indicator requirements are becoming increasingly strict In the future, how to improve work efficiency while saving costs is one of the foremost research directions in wireless communications Being able to learn from experience is an important way to approach this vision Transfer learning (TL) encourages new tasks/domains to learn from experienced tasks/domains for helping new tasks become faster and more efficient TL can help save energy and improve efficiency with the correlation and similarity information between different tasks in many fields of wireless communications Therefore, applying TL to future 6G communications is a very valuable topic TL has achieved some good results in wireless communications In order to improve the development of TL applied in 6G communications, this article performs a comprehensive review of the TL algorithms used in different wireless communication fields, such as base stations/access points switching, indoor wireless localization and intrusion detection in wireless networks, etc Moreover, the future research directions of mutual relationship between TL and 6G communications are discussed in detail Challenges and future issues about integrate TL into 6G are proposed at the end This article is intended to help readers understand the past, present, and future between TL and wireless communications

Book
25 Jan 2021
TL;DR: This monograph covers the foundations of User-centric Cell-free Massive MIMO, starting from the motivation and mathematical definition, and describes the state-of-the-art signal processing algorithms for channel estimation, uplink data reception.
Abstract: Modern day cellular mobile networks use Massive MIMO technology to extend range and service multiple devices within a cell. This has brought tremendous improvements in the high peak data rates that can be handled. Nevertheless, one of the characteristics of this technology is large variations in the quality of service dependent on where the end user is located in any given cell. This becomes increasingly problematic when we are creating a society where wireless access is supposed to be ubiquitous. When payments, navigation, entertainment, and control of autonomous vehicles are all relying on wireless connectivity the primary goal for future mobile networks should not be to increase the peak rates, but the rates that can be guaranteed to the vast majority of the locations in the geographical coverage area. The cellular network architecture was not designed for high-rate data services but for low-rate voice services, thus it is time to look beyond the cellular paradigm and make a clean-slate network design that can reach the performance requirements of the future. This monograph considers the cell-free network architecture that is designed to reach the aforementioned goal of uniformly high data rates everywhere. The authors introduce the concept of a cell-free network before laying out the foundations of what is required to design and build such a network. They cover the foundations of channel estimation, signal processing, pilot assignment, dynamic cooperation cluster formation, power optimization, fronthaul signaling, and spectral efficiency evaluation in uplink and downlink under different degrees of cooperation among the access points and arbitrary linear combining and precoding. This monograph provides the reader with all the fundamental information required to design and build the next generation mobile networks without being hindered by the inherent restrictions of modern cellular-based technology.

Journal ArticleDOI
TL;DR: A comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques to meet the diversified service requirements of next-generation wireless systems is provided.
Abstract: Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.

Journal ArticleDOI
TL;DR: This paper addresses the receiver design for an IRS-assisted multiple-input multiple-output (MIMO) communication system via a Tensor modeling approach aiming at the channel estimation problem using supervised (pilot-assisted) methods and presents two channel estimation methods that rely on a parallel factor (PARAFAC) tensor modeling of the received signals.
Abstract: Intelligent reflecting surface (IRS) is an emerging technology for future wireless communications including 5G and especially 6 G. It consists of a large 2D array of (semi-)passive scattering elements that control the electromagnetic properties of radio-frequency waves so that the reflected signals add coherently at the intended receiver or destructively to reduce co-channel interference. The promised gains of IRS-assisted communications depend on the accuracy of the channel state information. In this paper, we address the receiver design for an IRS-assisted multiple-input multiple-output (MIMO) communication system via a tensor modeling approach aiming at the channel estimation problem using supervised (pilot-assisted) methods. Considering a structured time-domain pattern of pilots and IRS phase shifts, we present two channel estimation methods that rely on a parallel factor (PARAFAC) tensor modeling of the received signals. The first one has a closed-form solution based on a Khatri-Rao factorization of the cascaded MIMO channel, by solving rank-1 matrix approximation problems, while the second on is an iterative alternating estimation scheme. The common feature of both methods is the decoupling of the estimates of the involved MIMO channel matrices (base station-IRS and IRS-user terminal), which provides performance enhancements in comparison to competing methods that are based on unstructured LS estimates of the cascaded channel. Design recommendations for both methods that guide the choice of the system parameters are discussed. Numerical results show the effectiveness of the proposed receivers, highlight the involved trade-offs, and corroborate their superior performance compared to competing LS-based solutions.

Journal ArticleDOI
TL;DR: In this paper, an alternative application of metasurfaces for wireless communications as active reconfigurable antennas with advanced analog signal processing capabilities for next generation transceivers is presented.
Abstract: Next generation wireless base stations and access points will transmit and receive using an extremely massive numbers of antennas. A promising technology for realizing such massive arrays in a dynamically controllable and scalable manner with reduced cost and power consumption utilizes surfaces of radiating metamaterial elements, known as metasurfaces. To date, metasurfaces are mainly considered in the context of wireless communications as passive reflecting devices, aiding conventional transceivers in shaping the propagation environment. This article presents an alternative application of metasurfaces for wireless communications as active reconfigurable antennas with advanced analog signal processing capabilities for next generation transceivers. We review the main characteristics of metasurfaces used for radiation and reception, and analyze their main advantages as well as their capability to reliably communicate in wireless networks. As current studies unveil only a portion of the potential of metasurfaces, we detail a list of exciting research and implementation challenges which arise from the application of metasurface antennas for wireless transceivers.

Journal ArticleDOI
TL;DR: The double-structured orthogonal matching pursuit (DS-OMP) algorithm, where the completely common non-zero rows and the partially commonNon-zero columns are jointly estimated for all users are proposed.
Abstract: Reconfigurable intelligent surface (RIS) can manipulate the wireless communication environment by controlling the coefficients of RIS elements. However, due to the large number of passive RIS elements without signal processing capability, channel estimation in RIS assisted wireless communication system requires high pilot overhead. In the second part of this invited paper, we propose to exploit the double-structured sparsity of the angular cascaded channels among users to reduce the pilot overhead. Specifically, we first reveal the double-structured sparsity, i.e., different angular cascaded channels for different users enjoy the completely common non-zero rows and the partially common non-zero columns. By exploiting this double-structured sparsity, we further propose the double-structured orthogonal matching pursuit (DS-OMP) algorithm, where the completely common non-zero rows and the partially common non-zero columns are jointly estimated for all users. Simulation results show that the pilot overhead required by the proposed scheme is lower than existing schemes.

Journal ArticleDOI
TL;DR: A physics and electromagnetic (EM) compliant communication model for analyzing and optimizing RIS-assisted wireless systems and accounts for the intertwinement between the amplitude and phase response of the unit cells of the RIS.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging technology for application to wireless networks. We introduce a physics and electromagnetic (EM) compliant communication model for analyzing and optimizing RIS-assisted wireless systems. The proposed model has four main notable attributes: (i) it is end-to-end , i.e., it is formulated in terms of an equivalent channel that yields a one-to-one mapping between the voltages fed into the ports of a transmitter and the voltages measured at the ports of a receiver; (ii) it is EM-compliant , i.e., it accounts for the generation and propagation of the EM fields; (iii) it is mutual coupling aware , i.e., it accounts for the mutual coupling among the sub-wavelength unit cells of the RIS; and (iv) it is unit cell aware , i.e., it accounts for the intertwinement between the amplitude and phase response of the unit cells of the RIS.

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey-style introduction to HLWNets, starting with a framework of system design in the aspects of network architectures, cell deployments, multiple access and modulation schemes, illumination requirements and backhaul.
Abstract: In order to tackle the rapidly growing number of mobile devices and their expanding demands for Internet services, network convergence is envisaged to integrate different technology domains. For indoor wireless communications, one promising approach is to coordinate light fidelity (LiFi) and wireless fidelity (WiFi), namely hybrid LiFi and WiFi networks (HLWNets). This hybrid network combines the high-speed data transmission of LiFi and the ubiquitous coverage of WiFi. In this article, we present a survey-style introduction to HLWNets, starting with a framework of system design in the aspects of network architectures, cell deployments, multiple access and modulation schemes, illumination requirements and backhaul. Key performance metrics and recent achievements are then reviewed to demonstrate the superiority of HLWNets against stand-alone networks. Further, the unique challenges facing HLWNets are elaborated on key research topics including user behavior modeling, interference management, handover and load balancing. Moreover, the potential of HLWNets in the application areas is presented, exemplified by indoor positioning and physical layer security. Finally, the challenges and future research directions are discussed.

Journal ArticleDOI
TL;DR: In this paper, a two-timescale (TTS) transmission protocol was proposed to maximize the achievable average sum-rate for an IRS-aided multiuser system under the general correlated Rician channel model.
Abstract: Intelligent reflecting surface (IRS) has drawn a lot of attention recently as a promising new solution to achieve high spectral and energy efficiency for future wireless networks. By utilizing massive low-cost passive reflecting elements, the wireless propagation environment becomes controllable and thus can be made favorable for improving the communication performance. Prior works on IRS mainly rely on the instantaneous channel state information (I-CSI), which, however, is practically difficult to obtain for IRS-associated links due to its passive operation and large number of reflecting elements. To overcome this difficulty, we propose in this paper a new two-timescale (TTS) transmission protocol to maximize the achievable average sum-rate for an IRS-aided multiuser system under the general correlated Rician channel model. Specifically, the passive IRS phase shifts are first optimized based on the statistical CSI (S-CSI) of all links, which varies much slowly as compared to their I-CSI; while the transmit beamforming/precoding vectors at the access point (AP) are then designed to cater to the I-CSI of the users’ effective fading channels with the optimized IRS phase shifts, thus significantly reducing the channel training overhead and passive beamforming design complexity over the existing schemes based on the I-CSI of all channels. Besides, for ease of practical implementation, we consider discrete phase shifts at each reflecting element of the IRS. For the single-user case, an efficient penalty dual decomposition (PDD)-based algorithm is proposed, where the IRS phase shifts are updated in parallel to reduce the computational time. For the multiuser case, we propose a general TTS stochastic successive convex approximation (SSCA) algorithm by constructing a quadratic surrogate of the objective function, which cannot be explicitly expressed in closed-form. Simulation results are presented to validate the effectiveness of our proposed algorithms and evaluate the impact of S-CSI and channel correlation on the system performance.

Journal ArticleDOI
TL;DR: The performance of cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) for massive IoT systems is studied and hardware impairment parameter has a deleterious effect on system performance while the channel estimation parameter is always beneficial to the OP.
Abstract: Massive connectivity and limited energy are main challenges for the beyond 5G (B5G)-enabled massive Internet of Things (IoT) to maintain diversified Qualify of Service (QoS) of the huge number of IoT device users. Motivated by these challenges, this article studies the performance of cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) for massive IoT systems. Under the practical assumption, residual hardware impairments (RHIs) and channel estimation errors (CEEs) are taken into account. The communication between the base station (BS) and two NOMA IoT device users is realized through a direct link and the assistance of multiple relays with finite energy storage capability that can harvest energy from the BS. Aiming at improving the system performance, an optimal relay is selected among $K$ relays by using the partial relay selection (PRS) protocol to forward the received signal to the two NOMA IoT device users, namely, the far user (FU) and near user (NU). To evaluate the system performance, exact analytical expressions for the outage probability (OP) are derived in closed form. In order to get a better understanding of the overall system performance, we further undertake diversity order analyses by deriving asymptotic expressions for the OP in the high signal-to-noise ratio (SNR) regime. In addition, we also investigate the energy efficiency (EE) of the considered system, which is a crucial performance metric in massive IoT systems so that the impact of key system parameters on the performance can be quantified. Finally, the optimal power allocation scheme to maximize the sum rate of the considered system in the high SNR regime is also designed. Numerical results have shown that: 1) hardware impairment parameter has a deleterious effect on system performance while the channel estimation parameter is always beneficial to the OP; 2) the expected performance improvements obtained by the user of PRS protocol are enhanced by increasing the number of relays; and 3) the proposed power allocation scheme can optimize the sum-rate performance of the considered system.

Journal ArticleDOI
TL;DR: In this paper, network coding combined with opportunistic routing is used to improve energy efficiency in wireless IoT infrastructure, considering the existence of link correlation and a novel smart routing method to accurately estimate the number of transmissions required by forwarders.
Abstract: Modern Internet of Things (IoT) applications are heavily data driven and often require reliable data streams to achieve high-quality data mining. The concept of edge computing is introduced to reduce data latency and communication bandwidth between the cloud server and IoT edge devices. However, inefficient routing that may cause transmission failure or unnecessary data (re)transmission is still a key obstacle to obtain good and reliable data mining results. In this paper, network coding combined with opportunistic routing is used to improve energy efficiency in wireless IoT infrastructure, considering the existence of link correlation. Studies have shown that packet receptions on wireless links are correlated, which is completely contrary to the assumption of link independence used in existing routing mechanisms. This assumption causes estimation errors in the calculation of expected number of transmissions for forwarders, which further affects the selection of forwarder set, and ultimately affects the performance of the protocol. We propose an intra-session network coding mechanism based on the mining of link correlation. A novel smart routing method is proposed to accurately estimate the number of transmissions required by forwarders, together with an algorithm for selecting a forwarder set with more optimal number of transmissions. Simulation results demonstrate that the proposed mechanism can achieve fewer transmissions and offer more energy efficient communications for wireless edge IoT applications.