scispace - formally typeset
Search or ask a question

Showing papers on "Wireless ad hoc network published in 2007"


Journal ArticleDOI
TL;DR: An analytical framework for opportunistic spectrum access based on the theory of partially observable Markov decision process (POMDP) is developed and cognitive MAC protocols that optimize the performance of secondary users while limiting the interference perceived by primary users are proposed.
Abstract: We propose decentralized cognitive MAC protocols that allow secondary users to independently search for spectrum opportunities without a central coordinator or a dedicated communication channel. Recognizing hardware and energy constraints, we assume that a secondary user may not be able to perform full-spectrum sensing or may not be willing to monitor the spectrum when it has no data to transmit. We develop an analytical framework for opportunistic spectrum access based on the theory of partially observable Markov decision process (POMDP). This decision-theoretic approach integrates the design of spectrum access protocols at the MAC layer with spectrum sensing at the physical layer and traffic statistics determined by the application layer of the primary network. It also allows easy incorporation of spectrum sensing error and constraint on the probability of colliding with the primary users. Under this POMDP framework, we propose cognitive MAC protocols that optimize the performance of secondary users while limiting the interference perceived by primary users. A suboptimal strategy with reduced complexity yet comparable performance is developed. Without additional control message exchange between the secondary transmitter and receiver, the proposed decentralized protocols ensure synchronous hopping in the spectrum between the transmitter and the receiver in the presence of collisions and spectrum sensing errors

1,709 citations


Journal ArticleDOI
01 Jan 2007
TL;DR: This paper provides a set of security protocols, it is shown that they protect privacy and it is analyzed their robustness and efficiency, and describes some major design decisions still to be made.
Abstract: Vehicular networks are very likely to be deployed in the coming years and thus become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some cases have more than mere technical implications. We provide a set of security protocols, we show that they protect privacy and we analyze their robustness and efficiency.

1,550 citations


Proceedings ArticleDOI
27 Aug 2007
TL;DR: This paper adopts the opposite approach; it encourages strategically picked senders to interfere, and achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.
Abstract: Traditionally, interference is considered harmful. Wireless networks strive to avoid scheduling multiple transmissions at the same time in order to prevent interference. This paper adopts the opposite approach; it encourages strategically picked senders to interfere. Instead of forwarding packets, routers forward the interfering signals. The destination leverages network-level information to cancel the interference and recover the signal destined to it. The result is analog network coding because it mixes signals not bits.So, what if wireless routers forward signals instead of packets? Theoretically, such an approach doubles the capacity of the canonical 2-way relay network. Surprisingly, it is also practical. We implement our design using software radios and show that it achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.

1,440 citations


Journal ArticleDOI
05 Mar 2007
TL;DR: A survey of the recent efforts towards a systematic understanding of layering as optimization decomposition can be found in this paper, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems.
Abstract: Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent cross-layer designs are also conducted through piecemeal approaches. Network protocol stacks may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of layering as optimization decomposition, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, leading to a choice of different layering architectures. This paper surveys the current status of horizontal decomposition into distributed computation, and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent works are summarized, and open issues discussed. Through case studies, it is illustrated how layering as Optimization Decomposition provides a common language to think about modularization in the face of complex, networked interactions, a unifying, top-down approach to design protocol stacks, and a mathematical theory of network architectures

1,301 citations


Proceedings ArticleDOI
09 Sep 2007
TL;DR: SimBet Routing is proposed which exploits the exchange of pre-estimated "betweenness' centrality metrics and locally determined social "similarity' to the destination node and outperforms PRoPHET Routing, particularly when the sending and receiving nodes have low connectivity.
Abstract: Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move freely. This paper presents a multidisciplinary solution based on the consideration of the so-called small world dynamics which have been proposed for economy and social studies and have recently revealed to be a successful approach to be exploited for characterising information propagation in wireless networks. To this purpose, some bridge nodes are identified based on their centrality characteristics, i.e., on their capability to broker information exchange among otherwise disconnected nodes. Due to the complexity of the centrality metrics in populated networks the concept of ego networks is exploited where nodes are not required to exchange information about the entire network topology, but only locally available information is considered. Then SimBet Routing is proposed which exploits the exchange of pre-estimated "betweenness' centrality metrics and locally determined social "similarity' to the destination node. We present simulations using real trace data to demonstrate that SimBet Routing results in delivery performance close to Epidemic Routing but with significantly reduced overhead. Additionally, we show that SimBet Routing outperforms PRoPHET Routing, particularly when the sending and receiving nodes have low connectivity.

1,232 citations


01 Jan 2007
TL;DR: A survey of the recent efforts towards a systematic understanding of layering as optimization decomposition, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems.
Abstract: | Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent cross-layer designs are also conducted through piecemeal approaches. Network protocol stacks may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of "layering" as "optimization decomposition," where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, leading to a choice of different layering architectures. This paper surveys the current status of horizontal decomposition into distributed computation, and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent works are summarized, and open issues discussed. Through case studies, it is illustrated how "Layering as Optimization Decomposition" provides a common language to think about modularization in the face of complex, networked interactions, a unifying, top-down approach to design protocol stacks, and a mathematical theory of network architectures.

1,229 citations


Journal ArticleDOI
TL;DR: The research challenge of routing in VANETs is discussed and recent routing protocols and related mobility models for VANets are surveyed.
Abstract: Vehicular ad hoc network (VANET) is an emerging new technology integrating ad hoc network, wireless LAN (WLAN) and cellular technology to achieve intelligent inter-vehicle communications and improve road traffic safety and efficiency. VANETs are distinguished from other kinds of ad hoc networks by their hybrid network architectures, node movement characteristics, and new application scenarios. Therefore, VANETs pose many unique networking research challenges, and the design of an efficient routing protocol for VANETs is very crucial. In this article, we discuss the research challenge of routing in VANETs and survey recent routing protocols and related mobility models for VANETs.

1,147 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the proposed protocol cannot only guarantee the requirements of security and privacy but can also provide the desired traceability of each vehicle in the case where the ID of the message sender has to be revealed by the authority for any dispute event.
Abstract: In this paper, we first identify some unique design requirements in the aspects of security and privacy preservation for communications between different communication devices in vehicular ad hoc networks. We then propose a secure and privacy-preserving protocol based on group signature and identity (ID)-based signature techniques. We demonstrate that the proposed protocol cannot only guarantee the requirements of security and privacy but can also provide the desired traceability of each vehicle in the case where the ID of the message sender has to be revealed by the authority for any dispute event. Extensive simulation is conducted to verify the efficiency, effectiveness, and applicability of the proposed protocol in various application scenarios under different road systems.

871 citations


Journal ArticleDOI
TL;DR: A rigorous, unified framework based on ordinary differential equations (ODEs) to study epidemic routing and its variations is developed, investigating how resources such as buffer space and the number of copies made for a packet can be traded for faster delivery.

810 citations


Posted Content
TL;DR: This paper proposes a physical-layer network coding (PNC) scheme to coordinate transmissions among nodes that makes use of the additive nature of simultaneously arriving electromagnetic (EM) waves for equivalent coding operation and demonstrates its potential for boosting network capacity.
Abstract: A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11). The goal of this paper is to show how the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacityboosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC) scheme to coordinate transmissions among nodes. In contrast to “straightforward” network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM) waves for equivalent coding operation. PNC can yield higher capacity than straightforward network coding when applied to wireless networks. We believe this is a first paper that ventures into EM-wavebased network coding at the physical layer and demonstrates its potential for boosting network capacity. PNC opens up a whole new research area because of its implications and new design requirements for the physical, MAC, and network layers of ad hoc wireless stations. The resolution of the many outstanding but interesting issues in PNC may lead to a revolutionary new paradigm for wireless ad hoc networking.

785 citations


Journal ArticleDOI
TL;DR: Simulation results show that the proposed schemes can significantly reduce contention at the MAC layer by achieving up to 70 percent reduction in packet loss rate while keeping end-to-end delay at acceptable levels for most VANET applications.
Abstract: Several multihop applications developed for vehicular ad hoc networks use broadcast as a means to either discover nearby neighbors or propagate useful traffic information to other vehicles located within a certain geographical area. However, the conventional broadcast mechanism may lead to the so-called broadcast storm problem, a scenario in which there is a high level of contention and collisions at the link layer due to an excessive number of broadcast packets. While this is a well-known problem in mobile ad hoc wireless networks, only a few studies have addressed this issue in the VANET context, where mobile hosts move along the roads in a certain limited set of directions as opposed to randomly moving in arbitrary directions within a bounded area. Unlike other existing works, we quantify the impact of broadcast storms in VANETs in terms of message delay and packet loss rate in addition to conventional metrics such as message reachability and overhead. Given that VANET applications are currently confined to using the DSRC protocol at the data link layer, we propose three probabilistic and timer-based broadcast suppression techniques: weighted p-persistence, slotted 1-persistence, and slotted p-persistence schemes, to be used at the network layer. Our simulation results show that the proposed schemes can significantly reduce contention at the MAC layer by achieving up to 70 percent reduction in packet loss rate while keeping end-to-end delay at acceptable levels for most VANET applications.

Journal ArticleDOI
TL;DR: Much better scaling than multihop can be achieved in dense networks, as well as in extended networks with low attenuation, and the total capacity of the network scales linearly with n.
Abstract: n source and destination pairs randomly located in an area want to communicate with each other. Signals transmitted from one user to another at distance r apart are subject to a power loss of r-alpha as well as a random phase. We identify the scaling laws of the information-theoretic capacity of the network when nodes can relay information for each other. In the case of dense networks, where the area is fixed and the density of nodes increasing, we show that the total capacity of the network scales linearly with n. This improves on the best known achievability result of n2/3 of Aeron and Saligrama. In the case of extended networks, where the density of nodes is fixed and the area increasing linearly with n, we show that this capacity scales as n2-alpha/2 for 2lesalpha 4. Thus, much better scaling than multihop can be achieved in dense networks, as well as in extended networks with low attenuation. The performance gain is achieved by intelligent node cooperation and distributed multiple-input multiple-output (MIMO) communication. The key ingredient is a hierarchical and digital architecture for nodal exchange of information for realizing the cooperation.

Journal ArticleDOI
TL;DR: In this paper, the scaling limit approach of statistical physics has been used to determine the achievable bit rate per source-destination pair in a wireless network of n randomly located nodes, where the network operation strategy corresponds to the transition region between order and disorder of an underlying percolation model.
Abstract: An achievable bit rate per source-destination pair in a wireless network of n randomly located nodes is determined adopting the scaling limit approach of statistical physics It is shown that randomly scattered nodes can achieve, with high probability, the same 1/radicn transmission rate of arbitrarily located nodes This contrasts with previous results suggesting that a 1/radicnlogn reduced rate is the price to pay for the randomness due to the location of the nodes The network operation strategy to achieve the result corresponds to the transition region between order and disorder of an underlying percolation model If nodes are allowed to transmit over large distances, then paths of connected nodes that cross the entire network area can be easily found, but these generate excessive interference If nodes transmit over short distances, then such crossing paths do not exist Percolation theory ensures that crossing paths form in the transition region between these two extreme scenarios Nodes along these paths are used as a backbone, relaying data for other nodes, and can transport the total amount of information generated by all the sources A lower bound on the achievable bit rate is then obtained by performing pairwise coding and decoding at each hop along the paths, and using a time division multiple access scheme

Proceedings ArticleDOI
15 Oct 2007
TL;DR: A performance evaluation of the IEEE 802.11p Wireless Access in Vehicular Environments (WAVE) standard is provided, considering collision probability, throughput and delay, using simulations and analytical means.
Abstract: In order to provide Dedicated Short Range Communication (DSRC) for future vehicle-to-vehicle (V2V) communication the IEEE is currently working on the IEEE 802.11p Wireless Access in Vehicular Environments (WAVE) standard. The standard shall provide a multi-channel DSRC solution with high performance for multiple application types to be used in future Vehicular Ad Hoc Networks (VANETs). We provide a performance evaluation of the standard, considering collision probability, throughput and delay, using simulations and analytical means. WAVE can prioritize messages, however, in dense and high load scenarios the the troughput is decreases while the delay is increasing significantly.

Proceedings ArticleDOI
26 Jul 2007
TL;DR: In this paper, the ITS (intelligent transport system) includes two big function modules: Information processing application system and Road condition information transferring system, which is in charge of the information exchange of the car inside, car to car and car to road.
Abstract: Ad hoc networks are a new wireless networking paradigm for mobile hosts. In this paper, we designed an intelligent transport system. The ITS (intelligent transport system) includes two big function modules: Information processing application system and Road condition information transferring system. The main task of the road condition information transferring module is in charge of the information exchange of the car inside, car to car and car to road. The module works in ad hoc network, we call the network VANET (vehicular ad-hoc network) . Vehicular networks are likely to become the most relevant form of mobile ad hoc networks. For the sake of insuring the system can run normally, the information can be transferring correctly and fleetly, the security of VANET (vehicular ad-hoc network) of the road condition information transferring system is crucial. So integrate the characteristics of ad hoc network itself, in the ITS of this paper, we concern the security issues of VANETs from some aspects and provide the appropriate solving measures. To make sure the ITS can be used under the security pattern.

Proceedings ArticleDOI
19 Mar 2007
TL;DR: Simulation results for traditional mobility models, as well as for a more realistic "community-based" model, indicate that the proposed scheme can reduce the delay of existing spraying techniques up to 20 times in some scenarios.
Abstract: Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc networks (VANETs), etc. To deal with such networks researchers have suggested to use controlled replication or "spraying " methods that can reduce the overhead of flooding-based schemes by distributing a small number of copies to only a few relays. These relays then "look" for the destination in parallel as they move into the network. Although such schemes can perform well in scenarios with high mobility (e.g. VANETs), they struggle in situations were mobility is slow and correlated in space and/or time. To route messages efficiently in such networks, we propose a scheme that also distributes a small number of copies to few relays. However, each relay can then forward its copy further using a single-copy utility-based scheme, instead of naively waiting to deliver it to the destination itself. This scheme exploits all the advantages of controlled replication, but is also able to identify appropriate forwarding opportunities that could deliver the message faster. Simulation results for traditional mobility models, as well as for a more realistic "community-based" model, indicate that our scheme can reduce the delay of existing spraying techniques up to 20 times in some scenarios

Proceedings ArticleDOI
01 May 2007
TL;DR: This work presents a position-based routing scheme called Connectivity-Aware Routing (CAR), designed specifically for inter-vehicle communication in a city and/or highway environment, with the ability to not only locate positions of destinations but also to find connected paths between source and destination pairs.
Abstract: Vehicular ad hoc networks using WLAN technology have recently received considerable attention. We present a position-based routing scheme called Connectivity-Aware Routing (CAR) designed specifically for inter-vehicle communication in a city and/or highway environment. A distinguishing property of CAR is the ability to not only locate positions of destinations but also to find connected paths between source and destination pairs. These paths are auto-adjusted on the fly, without a new discovery process. "Guards" help to track the current position of a destination, even if it traveled a substantial distance from its initially known location. For the evaluation of the CAR protocol we use realistic mobility traces obtained from a microscopic vehicular traffic simulator that is based on a model of driver behavior and the real road maps of Switzerland.

Proceedings ArticleDOI
10 Sep 2007
TL;DR: This paper design mechanisms that reduce the security overhead for safety beaconing, and retain robustness for transportation safety, even in adverse network settings, are designed.
Abstract: Effective and robust operations, as well as security and privacy are critical for the deployment of vehicular ad hoc networks (VANETs). Efficient and easy-to-manage security and privacy-enhancing mechanisms are essential for the wide-spread adoption of the VANET technology. In this paper, we are concerned with this problem; and in particular, how to achieve efficient and robust pseudonym-based authentication. We design mechanisms that reduce the security overhead for safety beaconing, and retain robustness for transportation safety, even in adverse network settings. Moreover, we show how to enhance the availability and usability of privacy-enhancing VANET mechanisms: Our proposal enables vehicle on-board units to generate their own pseudonyms, without affecting the system security.

Journal ArticleDOI
TL;DR: This paper uses empirical vehicle traffic data measured on 1-80 freeway in California to develop a comprehensive analytical framework to study the disconnected network phenomenon and its network characteristics, and shows that, depending on the sparsity of vehicles or the market penetration rate of cars using Dedicated Short Range Communication technology, the network re-healing time can vary from a few seconds to several minutes.
Abstract: A vehicular ad hoc network (VANET) may exhibit a bipolar behavior, i.e., the network can either be fully connected or sparsely connected depending on the time of day or on the market penetration rate of the wireless communication devices. In this paper, we use empirical vehicle traffic data measured on 1-80 freeway in California to develop a comprehensive analytical framework to study the disconnected network phenomenon and its network characteristics. These characteristics shed light on the key routing performance metrics of interest in disconnected VANETs, such as the average time taken to propagate a packet to disconnected nodes (i.e., the re-healing time). Our results show that, depending on the sparsity of vehicles or the market penetration rate of cars using Dedicated Short Range Communication (DSRC) technology, the network re-healing time can vary from a few seconds to several minutes. This suggests that, for vehicular safety applications, a new ad hoc routing protocol will be needed as the conventional ad hoc routing protocols such as Dynamic Source Routing (DSR) and Ad Hoc On-Demand Distance Vector Routing (AODV) will not work with such long re-healing times. In addition, the developed analytical framework and its predictions provide valuable insights into the VANET routing performance in the disconnected network regime.

Journal ArticleDOI
01 Jan 2007
TL;DR: This paper presents an effective key management scheme that takes advantage of the powerful high-end sensors in heterogeneous sensor networks and provides better security with low complexity and significant reduction on storage requirement, compared with existing key management schemes.
Abstract: Security is critical for sensor networks used in military, homeland security and other hostile environments. Previous research on sensor network security mainly considers homogeneous sensor networks. Research has shown that homogeneous ad hoc networks have poor performance and scalability. Furthermore, many security schemes designed for homogeneous sensor networks suffer from high communication overhead, computation overhead, and/or high storage requirement. Recently deployed sensor network systems are increasingly following heterogeneous designs. Key management is an essential cryptographic primitive to provide other security operations. In this paper, we present an effective key management scheme that takes advantage of the powerful high-end sensors in heterogeneous sensor networks. The performance evaluation and security analysis show that the key management scheme provides better security with low complexity and significant reduction on storage requirement, compared with existing key management schemes.

Journal ArticleDOI
TL;DR: The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path in order to reduce additional routing overhead.
Abstract: We study routing misbehavior in MANETs (mobile ad hoc networks) in this paper. In general, routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. In this paper, we propose the 2ACK scheme that serves as an add-on technique for routing schemes to detect routing misbehavior and to mitigate their adverse effect. The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path. In order to reduce additional routing overhead, only a fraction of the received data packets are acknowledged in the 2ACK scheme. Analytical and simulation results are presented to evaluate the performance of the proposed scheme

Journal Article
TL;DR: An anomaly detection scheme using dynamic training method in which the training data is updated at regular time intervals is proposed and the simulation results show the effectiveness of the scheme compared with conventional scheme.
Abstract: This paper analyzes the blackhole attack which is one of the possible attacks in ad hoc networks. In a blackhole attack, a malicious node impersonates a destination node by sending a spoofed route reply packet to a source node that initiates a route discovery. By doing this, the malicious node can deprive the traffic from the source node. In order to prevent this kind of attack, it is crucial to detect the abnormality occurs during the attack. In conventional schemes, anomaly detection is achieved by defining the normal state from static training data. However, in mobile ad hoc networks where the network topology dynamically changes, such static training method could not be used efficiently. In this paper, we propose an anomaly detection scheme using dynamic training method in which the training data is updated at regular time intervals. The simulation results show the effectiveness of our scheme compared with conventional scheme.

Proceedings ArticleDOI
01 Mar 2007
TL;DR: This work introduces a tool MOVE, a tool that allows users to rapidly generate realistic mobility models for VANET simulations and shows that the simulation results obtained when nodes moving according to a realistic mobility model is significantly different from that of the commonly used random waypoint model.
Abstract: One emerging, new type of ad-hoc network is the vehicular ad-hoc network (VANET), in which vehicles constitute the mobile nodes in the network. Due to the prohibitive cost of deploying and implementing such a system in real world, most research in VANET relies on simulations for evaluation. A key component for VANET simulations is a realistic vehicular mobility model that ensures conclusions drawn from simulation experiments will carry through to real deployments. In this work, we introduce a tool MOVE that allows users to rapidly generate realistic mobility models for VANET simulations. MOVE is built on top of an open source micro-traffic simulator SUMO. The output of MOVE is a realistic mobility model and can be immediately used by popular network simulators such as ns-2 and qualnet. We evaluate and compare ad-hoc routing performance for vehicular nodes using MOVE to that using the random waypoint model. We show that the simulation results obtained when nodes moving according to a realistic mobility model is significantly different from that of the commonly used random waypoint model.

Journal ArticleDOI
TL;DR: Simulation results indicate the benefits of the proposed routing strategy in terms of increasing link duration, reducing the number of link-breakage events and increasing the end-to-end throughput.
Abstract: There are numerous research challenges that need to be addressed until a wide deployment of vehicular ad hoc networks (VANETs) becomes possible. One of the critical issues consists of the design of scalable routing algorithms that are robust to frequent path disruptions caused by vehicles' mobility. This paper argues the use of information on vehicles' movement information (e.g., position, direction, speed, and digital mapping of roads) to predict a possible link-breakage event prior to its occurrence. Vehicles are grouped according to their velocity vectors. This kind of grouping ensures that vehicles, belonging to the same group, are more likely to establish stable single and multihop paths as they are moving together. Setting up routes that involve only vehicles from the same group guarantees a high level of stable communication in VANETs. The scheme presented in this paper also reduces the overall traffic in highly mobile VANET networks. The frequency of flood requests is reduced by elongating the link duration of the selected paths. To prevent broadcast storms that may be intrigued during path discovery operation, another scheme is also introduced. The basic concept behind the proposed scheme is to broadcast only specific and well-defined packets, referred to as ldquobest packetsrdquo in this paper. The performance of the scheme is evaluated through computer simulations. Simulation results indicate the benefits of the proposed routing strategy in terms of increasing link duration, reducing the number of link-breakage events and increasing the end-to-end throughput.

Proceedings ArticleDOI
01 May 2007
TL;DR: A scalable and reliable point-to-point routing algorithm for ad hoc wireless networks and sensor-nets, and it is proved that the greedy routing strategy makes a consistent choice of the node responsible for the address, irrespective of the source address of the request.
Abstract: We propose a scalable and reliable point-to-point routing algorithm for ad hoc wireless networks and sensor-nets. Our algorithm assigns to each node of the network a virtual coordinate in the hyperbolic plane, and performs greedy geographic routing with respect to these virtual coordinates. Unlike other proposed greedy routing algorithms based on virtual coordinates, our embedding guarantees that the greedy algorithm is always successful in finding a route to the destination, if such a route exists. We describe a distributed algorithm for computing each node's virtual coordinates in the hyperbolic plane, and for greedily routing packets to a destination point in the hyperbolic plane. (This destination may be the address of another node of the network, or it may be an address associated to a piece of content in a Distributed Hash Table. In the latter case we prove that the greedy routing strategy makes a consistent choice of the node responsible for the address, irrespective of the source address of the request.) We evaluate the resulting algorithm in terms of both path stretch and node congestion.

Journal ArticleDOI
TL;DR: This paper summarizes and compares existing fault tolerant techniques to support sensor applications and discusses several interesting open research directions.
Abstract: Wireless sensor networks are resource-constrained self-organizing systems that are often deployed in inaccessible and inhospitable environments in order to collect data about some outside world phenomenon. For most sensor network applications, point-to-point reliability is not the main objective; instead, reliable event-of-interest delivery to the server needs to be guaranteed (possibly with a certain probability). The nature of communication in sensor networks is unpredictable and failure-prone, even more so than in regular wireless ad hoc networks. Therefore, it is essential to provide fault tolerant techniques for distributed sensor applications. Many recent studies in this area take drastically different approaches to addressing the fault tolerance issue in routing, transport and/or application layers. In this paper, we summarize and compare existing fault tolerant techniques to support sensor applications. We also discuss several interesting open research directions.

Journal ArticleDOI
TL;DR: This paper addresses the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET with a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles.
Abstract: Communication messages in vehicular ad hoc networks (VANET) can be used to locate and track vehicles. While tracking can be beneficial for vehicle navigation, it can also lead to threats on location privacy of vehicle user. In this paper, we address the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET. Compared to other mobile networks, VANET exhibits unique characteristics in terms of vehicular mobility constraints, application requirements such as a safety message broadcast period, and vehicular network connectivity. Based on the observed characteristics, we propose a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles. By simulating vehicular mobility in freeways and streets, the performance of the proposed scheme is evaluated under VANET application constraints and two passive adversary models. We make use of vehicular groups for anonymous access to location based service applications in VANET, for user privacy protection. The robustness of the user privacy provided is considered under various attacks.

Journal ArticleDOI
TL;DR: The article reviews the most popular peer-to-peer key management protocols for mobile ad hoc networks (MANETs) and discusses and provides comments on the strategy of each group separately.
Abstract: The article reviews the most popular peer-to-peer key management protocols for mobile ad hoc networks (MANETs). The protocols are subdivided into groups based on their design strategy or main characteristic. The article discusses and provides comments on the strategy of each group separately. The discussions give insight into open research problems in the area of pairwise key management.

Proceedings ArticleDOI
28 Oct 2007
TL;DR: This paper presents a novel approach that couples the physical layer characteristics of wireless networks with key generation algorithms based on the wireless communication phenomenon known as the principle of reciprocity which states that in the absence of interference both transmitter and receiver experience the same signal envelope.
Abstract: The broadcast nature of a wireless link provides a natural eavesdropping and intervention capability to an adversary. Thus, securing a wireless link is essential to the security of a wireless network, and key generation algorithms are necessary for securing wireless links. However, traditional key agreement algorithms can be very costly in many settings, e.g. in wireless ad-hoc networks, since they consume scarce resources such as bandwidth and battery power.Traditional key agreement algorithms are not suitable for wireless ad-hoc networks since they consume scarce resources such as bandwidth and battery power.This paper presents a novel approach that couples the physical layer characteristics of wireless networks with key generation algorithms. It is based on the wireless communication phenomenon known as the principle of reciprocity which states that in the absence of interference both transmitter and receiver experience the same signal envelope. The key-observation here is that the signal envelope information can provide to the two transceivers two correlated random sources that provide sufficient amounts of entropy which can be used to extract a cryptographic key. In contrast, it is virtually impossible for a third party, which is not located at one of the transceiver's position, to obtain or predict the exact envelope; thus retrieve the key. Since in the presence of interference strict reciprocity property can not be maintained; our methodology is based on detecting deep fades to extract correlated bitstrings. In particular, we show how a pair of transceivers can reconcile such bitstrings and finally flatten their distribution to reach key agreement. In our constructions we use cryptographic tools related to randomness extraction and information reconciliation. We introduce "secure fuzzy information reconciliators" a tool that enables us to describe robust key generation systems in our setting. Finally we provide a computational study that presents a simulation of a wireless channel that demonstrates the feasibility of our approach and justifies the assumptions made in our analysis.

Journal ArticleDOI
TL;DR: This work studies the improvement in TC obtainable with successive interference cancellation (SIC), an important receiver technique that has been shown to achieve the capacity of several classes of multiuser channels, but has not been carefully evaluated in the context of ad hoc wireless networks.
Abstract: The transmission capacity (TC) of a wireless ad hoc network is defined as the maximum spatial intensity of successful transmissions such that the outage probability does not exceed some specified threshold. This work studies the improvement in TC obtainable with successive interference cancellation (SIC), an important receiver technique that has been shown to achieve the capacity of several classes of multiuser channels, but has not been carefully evaluated in the context of ad hoc wireless networks. This paper develops closed-form upper bounds and easily computable lower bounds for the TC of ad hoc networks with SIC receivers, for both perfect and imperfect SIC. The analysis applies to any multiuser receiver that cancels the K strongest interfering signals by a factor z isin [0, 1]. In addition to providing the first closed-form capacity results for SIC in ad hoc networks, design-relevant insights are made possible. In particular, it is shown that SIC should be used with direct sequence spread spectrum. Also, any imperfections in the interference cancellation rapidly degrade its usefulness. More encouragingly, only a few - often just one - interfering nodes need to be canceled in order to get the vast majority of the available performance gain.