scispace - formally typeset
Search or ask a question

Showing papers on "Wireless ad hoc network published in 2013"


Journal ArticleDOI
01 May 2013
TL;DR: In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs, and the main FANET design challenges are introduced.
Abstract: One of the most important design problems for multi-UAV (Unmanned Air Vehicle) systems is the communication which is crucial for cooperation and collaboration between the UAVs. If all UAVs are directly connected to an infrastructure, such as a ground base or a satellite, the communication between UAVs can be realized through the in-frastructure. However, this infrastructure based communication architecture restricts the capabilities of the multi-UAV systems. Ad-hoc networking between UAVs can solve the problems arising from a fully infrastructure based UAV networks. In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs. The differences between FANETs, MANETs (Mobile Ad-hoc Networks) and VANETs (Vehicle Ad-Hoc Networks) are clarified first, and then the main FANET design challenges are introduced. Along with the existing FANET protocols, open research issues are also discussed.

1,072 citations


Journal ArticleDOI
TL;DR: It is shown that, due to its ability to decrease the rate of transmission collisions, the VeMAC protocol can provide significantly higher throughput on the control channel than ADHOC MAC, an existing TDMA MAC protocol for VANETs.
Abstract: The need of a medium access control (MAC) protocol for an efficient broadcast service is of great importance to support the high-priority safety applications in vehicular ad hoc networks (VANETs). This paper introduces VeMAC, a novel multichannel TDMA MAC protocol proposed specifically for a VANET scenario. The VeMAC supports efficient one-hop and multihop broadcast services on the control channel by using implicit acknowledgments and eliminating the hidden terminal problem. The protocol reduces transmission collisions due to node mobility on the control channel by assigning disjoint sets of time slots to vehicles moving in opposite directions and to road side units. Analysis and simulation results in highway and city scenarios are presented to evaluate the performance of VeMAC and compare it with ADHOC MAC, an existing TDMA MAC protocol for VANETs. It is shown that, due to its ability to decrease the rate of transmission collisions, the VeMAC protocol can provide significantly higher throughput on the control channel than ADHOC MAC.

466 citations


Journal ArticleDOI
TL;DR: This paper proposes FlashLinQ - a synchronous peer-to-peer wireless PHY/MAC network architecture for distributed channel allocation that develops an analog energy-level based signaling scheme that enables SIR (Signal to Interference Ratio) based distributed scheduling.
Abstract: This paper proposes FlashLinQ--a synchronous peer-to-peer wireless PHY/MAC network architecture. FlashLinQ leverages the fine-grained parallel channel access offered by OFDM and incorporates an analog energy-level-based signaling scheme that enables signal-to-interference ratio (SIR)-based distributed scheduling. This new signaling mechanism, and the concomitant scheduling algorithm, enables efficient channel-aware spatial resource allocation, leading to significant gains over a CSMA/CA system using RTS/CTS. FlashLinQ is a complete system architecture including: 1) timing and frequency synchronization derived from cellular spectrum; 2) peer discovery; 3) link management; and 4) channel-aware distributed power, data rate, and link scheduling. FlashLinQ has been implemented for operation over licensed spectrum on a digital signal processor/ field-programmable gate array (DSP/FPGA) platform. In this paper, we present FlashLinQ performance results derived from both measurements and simulations.

451 citations


Journal ArticleDOI
TL;DR: This paper proposes and implements a new intrusion-detection system named Enhanced Adaptive ACKnowledgment (EAACK) specially designed for MANETs, which demonstrates higher malicious-behavior-detected rates in certain circumstances while does not greatly affect the network performances.
Abstract: The migration to wireless network from wired network has been a global trend in the past few decades. The mobility and scalability brought by wireless network made it possible in many applications. Among all the contemporary wireless networks, Mobile Ad hoc NETwork (MANET) is one of the most important and unique applications. On the contrary to traditional network architecture, MANET does not require a fixed network infrastructure; every single node works as both a transmitter and a receiver. Nodes communicate directly with each other when they are both within the same communication range. Otherwise, they rely on their neighbors to relay messages. The self-configuring ability of nodes in MANET made it popular among critical mission applications like military use or emergency recovery. However, the open medium and wide distribution of nodes make MANET vulnerable to malicious attackers. In this case, it is crucial to develop efficient intrusion-detection mechanisms to protect MANET from attacks. With the improvements of the technology and cut in hardware costs, we are witnessing a current trend of expanding MANETs into industrial applications. To adjust to such trend, we strongly believe that it is vital to address its potential security issues. In this paper, we propose and implement a new intrusion-detection system named Enhanced Adaptive ACKnowledgment (EAACK) specially designed for MANETs. Compared to contemporary approaches, EAACK demonstrates higher malicious-behavior-detection rates in certain circumstances while does not greatly affect the network performances.

365 citations


Journal ArticleDOI
TL;DR: In this article, the convergence analysis of a class of distributed constrained non-convex optimization algorithms in multi-agent systems is studied and it is proved that consensus is asymptotically achieved in the network and that the algorithm converges to the set of Karush-Kuhn-Tucker points.
Abstract: We introduce a new framework for the convergence analysis of a class of distributed constrained non-convex optimization algorithms in multi-agent systems. The aim is to search for local minimizers of a non-convex objective function which is supposed to be a sum of local utility functions of the agents. The algorithm under study consists of two steps: a local stochastic gradient descent at each agent and a gossip step that drives the network of agents to a consensus. Under the assumption of decreasing stepsize, it is proved that consensus is asymptotically achieved in the network and that the algorithm converges to the set of Karush-Kuhn-Tucker points. As an important feature, the algorithm does not require the double-stochasticity of the gossip matrices. It is in particular suitable for use in a natural broadcast scenario for which no feedback messages between agents are required. It is proved that our results also holds if the number of communications in the network per unit of time vanishes at moderate speed as time increases, allowing potential savings of the network's energy. Applications to power allocation in wireless ad-hoc networks are discussed. Finally, we provide numerical results which sustain our claims.

294 citations


Journal ArticleDOI
TL;DR: An adaptive algorithm is introduced to increase system reliability in terms of the probability of successful reception of the packet and the delay of emergency messages in a harsh vehicular environment to reduce performance degradation in dense and high-mobility conditions.
Abstract: An analytical model for the reliability of a dedicated short-range communication (DSRC) control channel (CCH) to handle safety applications in vehicular ad hoc networks (VANETs) is proposed. Specifically, the model enables the determination of the probability of receiving status and safety messages from all vehicles within a transmitter's range and vehicles up to a certain distance, respectively. The proposed model is built based on a new mobility model that takes into account the vehicle's follow-on safety rule to derive accurately the relationship between the average vehicle speed and density. Moreover, the model takes into consideration 1) the impact of mobility on the density of vehicles around the transmitter, 2) the impact of the transmitter's and receiver's speeds on the system reliability, 3) the impact of channel fading by modeling the communication range as a random variable, and 4) the hidden terminal problem and transmission collisions from neighboring vehicles. It is shown that the current specifications of the DSRC may lead to severe performance degradation in dense and high-mobility conditions. Therefore, an adaptive algorithm is introduced to increase system reliability in terms of the probability of successful reception of the packet and the delay of emergency messages in a harsh vehicular environment. The proposed model and the enhancement algorithm are validated by simulation using realistic vehicular traces.

278 citations


Journal ArticleDOI
TL;DR: A survey of the main types of attack at the network layer, and a review of intrusion detection and protection mechanisms that have been proposed in the literature are presented.
Abstract: In the last decade, mobile ad hoc networks (MANETs) have emerged as a major next generation wireless networking technology. However, MANETs are vulnerable to various attacks at all layers, including in particular the network layer, because the design of most MANET routing protocols assumes that there is no malicious intruder node in the network. In this paper, we present a survey of the main types of attack at the network layer, and we then review intrusion detection and protection mechanisms that have been proposed in the literature. We classify these mechanisms as either point detection algorithms that deal with a single type of attack, or as intrusion detection systems (IDSs) that can deal with a range of attacks. A comparison of the proposed protection mechanisms is also included in this paper. Finally, we identify areas where further research could focus.

210 citations


Journal ArticleDOI
TL;DR: This work develops a distributed dynamic spectrum protocol in which ad-hoc device-to-device users opportunistically access the spectrum actively in use by cellular users, and shows that two devices can communicate with a low probability of outage while only minimally affecting the cellular network.
Abstract: In an attempt to utilize spectrum resources more efficiently, protocols sharing licensed spectrum with unlicensed users are receiving increased attention. From the perspective of cellular networks, spectrum underutilization makes spatial reuse a feasible complement to existing standards. Interference management is a major component in designing these schemes as it is critical that licensed users maintain their expected quality of service. We develop a distributed dynamic spectrum protocol in which ad-hoc device-to-device users opportunistically access the spectrum actively in use by cellular users. First, channel gain estimates are used to set feasible transmit powers for device-to-device users that keeps the interference they cause within the allowed interference temperature. Then network information is distributed by route discovery packets in a random access manner to help establish either a single-hop or multi-hop route between two device-to-device users. We show that network information in the discovery packet can decrease the failure rate of the route discovery and reduce the number of necessary transmissions to find a route. Using the found route, we show that two device-to-device users can communicate with a low probability of outage while only minimally affecting the cellular network, and can achieve significant power savings when communicating directly with each other instead of utilizing the cellular base station.

208 citations


Journal ArticleDOI
TL;DR: This paper proposes to use vehicular ad hoc networks (VANETs) to collect and aggregate real-time speed and position information on individual vehicles to optimize signal control at traffic intersections and proves that the OJF algorithm is 2-competitive, implying that the delay is less than or equal to twice the delay of an optimal offline schedule.
Abstract: In this paper, we propose to use vehicular ad hoc networks (VANETs) to collect and aggregate real-time speed and position information on individual vehicles to optimize signal control at traffic intersections. We first formulate the vehicular traffic signal control problem as a job scheduling problem on processors, with jobs corresponding to platoons of vehicles. Under the assumption that all jobs are of equal size, we give an online algorithm, referred to as the oldest job first (OJF) algorithm, to minimize the delay across the intersection. We prove that the OJF algorithm is 2-competitive, implying that the delay is less than or equal to twice the delay of an optimal offline schedule with perfect knowledge of the arrivals. We then show how a VANET can be used to group vehicles into approximately equal-sized platoons, which can then be scheduled using OJF. We call this the two-phase approach, where we first group the vehicular traffic into platoons and then apply the OJF algorithm, i.e., the oldest arrival first (OAF) algorithm. Our simulation results show that, under light and medium traffic loads, the OAF algorithm reduces the delays experienced by vehicles as they pass through the intersection, as compared with vehicle-actuated methods, Webster's method, and pretimed signal control methods. Under heavy vehicular traffic load, the OAF algorithm performs the same as the vehicle-actuated traffic method but still produces lower delays, as when compared with Webster's method and the pretimed signal control method.

206 citations


Journal ArticleDOI
01 Sep 2013
TL;DR: This paper presents a dynamic trust prediction model to evaluate the trustworthiness of nodes, which is based on the nodes’ historical behaviors, as well as the future behaviors via extended fuzzy logic rules prediction, and integrated the proposed trust predication model into the Source Routing Mechanism.
Abstract: Mobile ad hoc networks (MANETs) are spontaneously deployed over a geographically limited area without well-established infrastructure. The networks work well only if the mobile nodes are trusty and behave cooperatively. Due to the openness in network topology and absence of a centralized administration in management, MANETs are very vulnerable to various attacks from malicious nodes. In order to reduce the hazards from such nodes and enhance the security of network, this paper presents a dynamic trust prediction model to evaluate the trustworthiness of nodes, which is based on the nodes’ historical behaviors, as well as the future behaviors via extended fuzzy logic rules prediction. We have also integrated the proposed trust predication model into the Source Routing Mechanism. Our novel on-demand trust-based unicast routing protocol for MANETs, termed as Trust-based Source Routing protocol (TSR), provides a flexible and feasible approach to choose the shortest route that meets the security requirement of data packets transmission. Extensive experiments have been conducted to evaluate the efficiency and effectiveness of the proposed mechanism in malicious node identification and attack resistance. The results show that TSR improves packet delivery ratio and reduces average end-to-end latency.

193 citations


Journal ArticleDOI
TL;DR: This paper focuses on the analysis of the 802.11p safety-critical broadcast on the CCH in a VANET environment and improves the existing work by taking several aspects into design consideration and extensive performance evaluations based on the NS-2 simulator help to validate the accuracy of the proposed model.
Abstract: Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are gaining increasing importance in vehicular applications. Dedicated short-range communication (DSRC) is a fundamental set of short-to-medium-range communication channels and a set of protocols and standards that are specifically designed for V2V and V2I communications. IEEE 802.11p is a protocol that has been standardized as the medium access control (MAC) layer of the DSRC standard. Due to the highly dynamic topology and low delay constraints in vehicular ad hoc networks (VANETs), direct (or one-hop) broadcast on the control channel (CCH) is an effective approach to inform the neighborhood of safety-related messages. The 802.11p enhanced distributed channel access (EDCA) mechanism allows four access categories (ACs) in a station for applications with different priorities according to their criticalities for the vehicle's safety. This paper focuses on the analysis of the 802.11p safety-critical broadcast on the CCH in a VANET environment and improves the existing work by taking several aspects into design consideration. Extensive performance evaluations based on the NS-2 simulator help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the standard 802.11p broadcast on the CCH.

Journal ArticleDOI
TL;DR: This paper focuses on developing a novel and nonintrusive driver behavior detection system using a context-aware system in VANETs to detect abnormal behaviors exhibited by drivers and to warn other vehicles on the road to prevent accidents from happening.
Abstract: Vehicular ad hoc networks (VANETs) have emerged as an application of mobile ad hoc networks (MANETs), which use dedicated short-range communication (DSRC) to allow vehicles in close proximity to communicate with each other or to communicate with roadside equipment. Applying wireless access technology in vehicular environments has led to the improvement of road safety and a reduction in the number of fatalities caused by road accidents through development of road safety applications and facilitation of information sharing between moving vehicles regarding the road. This paper focuses on developing a novel and nonintrusive driver behavior detection system using a context-aware system in VANETs to detect abnormal behaviors exhibited by drivers and to warn other vehicles on the road to prevent accidents from happening. A five-layer context-aware architecture is proposed, which is able to collect contextual information about the driving environment, to perform reasoning about certain and uncertain contextual information, and to react upon that information. A probabilistic model based on dynamic Bayesian networks (DBNs) in real time, inferring four types of driving behavior (normal, drunk, reckless, and fatigue) by combining contextual information about the driver, the vehicle, and the environment, is presented. The dynamic behavior model can capture the static and the temporal aspects related to the behavior of the driver, thus leading to robust and accurate behavior detection. The evaluation of behavior detection using synthetic data proves the validity of our model and the importance of including contextual information about the driver, the vehicle, and the environment.

Journal ArticleDOI
TL;DR: This paper proposes a cooperative method to verify the positions of potential Sybil nodes and introduces a statistical method and design a system which is able to verify where a vehicle comes from, termed the Presence Evidence System (PES).

Journal ArticleDOI
TL;DR: Methods to mitigate resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining nodes' battery power, are discussed, including a new proof-of-concept protocol that provably bounds the damage caused by Vampires during the packet forwarding phase.
Abstract: Ad hoc low-power wireless networks are an exciting research direction in sensing and pervasive computing. Prior security work in this area has focused primarily on denial of communication at the routing or medium access control levels. This paper explores resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining nodes' battery power. These "Vampire” attacks are not specific to any specific protocol, but rather rely on the properties of many popular classes of routing protocols. We find that all examined protocols are susceptible to Vampire attacks, which are devastating, difficult to detect, and are easy to carry out using as few as one malicious insider sending only protocol-compliant messages. In the worst case, a single Vampire can increase network-wide energy usage by a factor of O(N), where N in the number of network nodes. We discuss methods to mitigate these types of attacks, including a new proof-of-concept protocol that provably bounds the damage caused by Vampires during the packet forwarding phase.

Journal ArticleDOI
TL;DR: A comprehensive survey for CDSs and related problems with various network models and specific applications is given and some open problems and interesting issues in this field are proposed.

Posted Content
TL;DR: D caching networks can turn memory into bandwidth (i.e., doubling the on-board cache memory on the user devices yields a 100% increase of the user throughout) and it is shown that the user throughput is directly proportional to the fraction of cached information over the whole file library size.
Abstract: We consider a wireless device-to-device (D2D) network where the nodes have pre-cached information from a library of available files. Nodes request files at random. If the requested file is not in the on-board cache, then it is downloaded from some neighboring node via one-hop "local" communication. An outage event occurs when a requested file is not found in the neighborhood of the requesting node, or if the network admission control policy decides not to serve the request. We characterize the optimal throughput-outage tradeoff in terms of tight scaling laws for various regimes of the system parameters, when both the number of nodes and the number of files in the library grow to infinity. Our analysis is based on Gupta and Kumar {\em protocol model} for the underlying D2D wireless network, widely used in the literature on capacity scaling laws of wireless networks without caching. Our results show that the combination of D2D spectrum reuse and caching at the user nodes yields a per-user throughput independent of the number of users, for any fixed outage probability in $(0,1)$. This implies that the D2D caching network is "scalable": even though the number of users increases, each user achieves constant throughput. This behavior is very different from the classical Gupta and Kumar result on ad-hoc wireless networks, for which the per-user throughput vanishes as the number of users increases. Furthermore, we show that the user throughput is directly proportional to the fraction of cached information over the whole file library size. Therefore, we can conclude that D2D caching networks can turn "memory" into "bandwidth" (i.e., doubling the on-board cache memory on the user devices yields a 100\% increase of the user throughout).

Journal ArticleDOI
TL;DR: This article has discussed about the VANET and its technical and security challenges, some major attacks and solutions that can be implemented against these attacks, and compared the solution using different parameters.
Abstract: Vehicular Ad hoc Networks (VANETs) are the promising approach to provide safety and other applications to the drivers as well as passengers. It becomes a key component of the intelligent transport system. A lot of works have been done towards it but security in VANET got less attention. In this article, we have discussed about the VANET and its technical and security challenges. We have also discussed some major attacks and solutions that can be implemented against these attacks. We have compared the solution using different parameters. Lastly we have discussed the mechanisms that are used in the solutions.

Journal ArticleDOI
TL;DR: Performance analysis and simulation results show that the proposed model can maintain the network stability, reduce the end-to-end delay, increase the packet delivery ratio, and reduce the communications overhead.

Journal ArticleDOI
TL;DR: This work proposes an Anonymous Location-based Efficient Routing proTocol (ALERT), a novel anonymous routing protocol that dynamically partitions the network field into zones and randomly chooses nodes in zones as intermediate relay nodes, which form a nontraceable anonymous route.
Abstract: Mobile Ad Hoc Networks (MANETs) use anonymous routing protocols that hide node identities and/or routes from outside observers in order to provide anonymity protection. However, existing anonymous routing protocols relying on either hop-by-hop encryption or redundant traffic, either generate high cost or cannot provide full anonymity protection to data sources, destinations, and routes. The high cost exacerbates the inherent resource constraint problem in MANETs especially in multimedia wireless applications. To offer high anonymity protection at a low cost, we propose an Anonymous Location-based Efficient Routing proTocol (ALERT). ALERT dynamically partitions the network field into zones and randomly chooses nodes in zones as intermediate relay nodes, which form a nontraceable anonymous route. In addition, it hides the data initiator/receiver among many initiators/receivers to strengthen source and destination anonymity protection. Thus, ALERT offers anonymity protection to sources, destinations, and routes. It also has strategies to effectively counter intersection and timing attacks. We theoretically analyze ALERT in terms of anonymity and efficiency. Experimental results exhibit consistency with the theoretical analysis, and show that ALERT achieves better route anonymity protection and lower cost compared to other anonymous routing protocols. Also, ALERT achieves comparable routing efficiency to the GPSR geographical routing protocol.

Journal ArticleDOI
TL;DR: An overview of the multichannel architecture proposed by standardization bodies in the United States and Europe is presented and the main contribution is the identification of the open challenges for multich channel coordination, synchronization, and access.
Abstract: Vehicular ad hoc networks are the key to provisioning safety-critical and commercial services on the road. Multiple channels are assigned in the 5 GHz spectrum to support these services. In this article an overview of the multichannel architecture proposed by standardization bodies in the United States and Europe is presented. The main contribution is the identification of the open challenges for multichannel coordination, synchronization, and access. Discussions on related countermeasures, fully explored in neither the standards nor the scientific literature, aim to serve as guidelines for designers of future protocols and applications in vehicular environments.

Journal ArticleDOI
TL;DR: This paper proposes an efficient cooperative authentication scheme for VANETs that maximally eliminates redundant authentication efforts on the same message by different vehicles, and uses an evidence-token approach to controlling the authentication workload, without the direct involvement of a trusted authority.
Abstract: Recently, vehicular ad hoc networks (VANETs) have emerged as a promising approach to increasing road safety and efficiency, as well as improving the driving experience. This can be accomplished in a variety of applications that involve communication between vehicles, such as warning other vehicles about emergency braking; however, if we do not take security and privacy issues into consideration, the attractive features of VANETs will inevitably result in higher risks for abuse, even before the wide deployment of such networks. While message authentication is a common tool for ensuring information reliability, namely, data integrity and authenticity, it faces a challenge in VANETs. When the number of messages that are received by a vehicle becomes large, traditional exhaustive (or per-message) authentication may generate unaffordable computational overhead on the vehicle and therefore bring unacceptable delay to time-critical applications, such as accident warning. In this paper, we propose an efficient cooperative authentication scheme for VANETs. To reduce the authentication overhead on individual vehicles and shorten the authentication delay, this scheme maximally eliminates redundant authentication efforts on the same message by different vehicles. To further resist various attacks, including free-riding attacks that are launched by selfish vehicles, and encourage cooperation, the scheme uses an evidence-token approach to controlling the authentication workload, without the direct involvement of a trusted authority (TA). When a vehicle passes a roadside unit (RSU), the vehicle obtains an evidence token from the TA via the RSU. This token reflects the contribution that the vehicle has made to cooperative authentication in the past, which enables the vehicle to proportionally benefit from other vehicles' authentication efforts in the future and thus reduce its own workload. Through extensive simulation, we evaluate the proposed cooperative authentication scheme in terms of workload savings and the ability to resist free-riding attacks.

Journal ArticleDOI
TL;DR: This paper is the first to propose an evolving graph-based reliable routing scheme for VANETs to facilitate quality-of-service (QoS) support in the routing process and demonstrates, through the simulation results, that the proposed scheme significantly outperforms the related protocols in the literature.
Abstract: Vehicular ad hoc networks (VANETs) are a special form of wireless networks made by vehicles communicating among themselves on roads. The conventional routing protocols proposed for mobile ad hoc networks (MANETs) work poorly in VANETs. As communication links break more frequently in VANETs than in MANETs, the routing reliability of such highly dynamic networks needs to be paid special attention. To date, very little research has focused on the routing reliability of VANETs on highways. In this paper, we use the evolving graph theory to model the VANET communication graph on a highway. The extended evolving graph helps capture the evolving characteristics of the vehicular network topology and determines the reliable routes preemptively. This paper is the first to propose an evolving graph-based reliable routing scheme for VANETs to facilitate quality-of-service (QoS) support in the routing process. A new algorithm is developed to find the most reliable route in the VANET evolving graph from the source to the destination. We demonstrate, through the simulation results, that our proposed scheme significantly outperforms the related protocols in the literature.

Journal ArticleDOI
TL;DR: A Markov chain is proposed to model these relations by simple expressions without giving up the accuracy and derive a distributed adaptive algorithm for minimizing the power consumption while guaranteeing a given successful packet reception probability and delay constraints in the packet transmission.
Abstract: Distributed processing through ad hoc and sensor networks is having a major impact on scale and applications of computing. The creation of new cyber-physical services based on wireless sensor devices relies heavily on how well communication protocols can be adapted and optimized to meet quality constraints under limited energy resources. The IEEE 802.15.4 medium access control protocol for wireless sensor networks can support energy efficient, reliable, and timely packet transmission by a parallel and distributed tuning of the medium access control parameters. Such a tuning is difficult, because simple and accurate models of the influence of these parameters on the probability of successful packet transmission, packet delay, and energy consumption are not available. Moreover, it is not clear how to adapt the parameters to the changes of the network and traffic regimes by algorithms that can run on resource-constrained devices. In this paper, a Markov chain is proposed to model these relations by simple expressions without giving up the accuracy. In contrast to previous work, the presence of limited number of retransmissions, acknowledgments, unsaturated traffic, packet size, and packet copying delay due to hardware limitations is accounted for. The model is then used to derive a distributed adaptive algorithm for minimizing the power consumption while guaranteeing a given successful packet reception probability and delay constraints in the packet transmission. The algorithm does not require any modification of the IEEE 802.15.4 medium access control and can be easily implemented on network devices. The algorithm has been experimentally implemented and evaluated on a testbed with off-the-shelf wireless sensor devices. Experimental results show that the analysis is accurate, that the proposed algorithm satisfies reliability and delay constraints, and that the approach reduces the energy consumption of the network under both stationary and transient conditions. Specifically, even if the number of devices and traffic configuration change sharply, the proposed parallel and distributed algorithm allows the system to operate close to its optimal state by estimating the busy channel and channel access probabilities. Furthermore, results indicate that the protocol reacts promptly to errors in the estimation of the number of devices and in the traffic load that can appear due to device mobility. It is also shown that the effect of imperfect channel and carrier sensing on system performance heavily depends on the traffic load and limited range of the protocol parameters.

Journal ArticleDOI
TL;DR: This study investigates physical-layer security in wireless ad hoc networks and investigates two types of multi-antenna transmission schemes for providing secrecy enhancements, and indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large.
Abstract: We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the network-wide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.

Journal ArticleDOI
TL;DR: This paper presents an information-centric architecture for IEEE 802.11 wireless ad hoc networks, named E-CHANET, which performs routing, forwarding and reliable transport functions, specifically tailored to cope with the limitations and requirements of wireless distributed environments.

01 Jan 2013
TL;DR: Main findings of this paper are that an efficient and robust VANET is one that satisfies all design parameters such as QoS, minimu m latency, low BER and high PDR.
Abstract: Vehicu lar ad-hoc networks (VANETs) technology has emerged as an important research area over the last few years. Being ad-hoc in nature, VA NET is a type of networks that is created from the concept of establishing a network of cars for a specific need or situation. VA NETs have now been established as reliable networks that vehicles use for co mmunication purpose on highways or urban environments. Along with the benefits, there arise a large number of challenges in VANET such as provisioning of QoS, h igh connectivity and bandwidth and security to vehicle and individual privacy. This article presents state-of-the-art of VANET and discusses the related issues. Network architecture, signal modeling and propagation mechanis m, mobility modeling, routing protocols and network security are discussed in detail. Main findings of this paper are that an efficient and robust VANET is one wh ich satisfies all design parameters such as QoS, minimu m latency, low BER and high PDR. So me key research areas and challenges in VANET are presented at the end of the paper.

Journal ArticleDOI
TL;DR: PFQ-AODV is a flexible, portable, and practicable solution for routing in VANETs that learns the optimal route by employing a fuzzy constraint Q-learning algorithm based on ad hoc on-demand distance vector (A ODV) routing.
Abstract: Vehicular ad hoc networks (VANETs) have been attracting interest for their potential uses in driving assistance, traffic monitoring, and entertainment systems. However, due to vehicle movement, limited wireless resources, and the lossy characteristics of a wireless channel, providing a reliable multihop communication in VANETs is particularly challenging. In this paper, we propose PFQ-AODV, which is a portable VANET routing protocol that learns the optimal route by employing a fuzzy constraint Q-learning algorithm based on ad hoc on-demand distance vector (AODV) routing. The protocol uses fuzzy logic to evaluate whether a wireless link is good or not by considering multiple metrics, which are, specifically, the available bandwidth, link quality, and relative vehicle movement. Based on an evaluation of each wireless link, the proposed protocol learns the best route using the route request (RREQ) messages and hello messages. The protocol can infer vehicle movement based on neighbor information when position information is unavailable. PFQ-AODV is also independent of lower layers. Therefore, PFQ-AODV provides a flexible, portable, and practicable solution for routing in VANETs. We show the effectiveness of the proposed protocol by using both computer simulations and real-world experiments.

Journal ArticleDOI
TL;DR: An energy-efficient genetic algorithm mechanism to resolve quality of service (QoS) multicast routing problem, which is NP-complete, depends on bounded end-to-end delay and minimum energy cost of the multicast tree.
Abstract: The consideration of energy consumption in wireless ad hoc networks prevents the problem of the network exhausting batteries, thus partitioning the entire network. Power-aware multicasting is proposed to reduce the power consumption. This letter presents an energy-efficient genetic algorithm mechanism to resolve quality of service (QoS) multicast routing problem, which is NP-complete. The proposed genetic algorithm depends on bounded end-to-end delay and minimum energy cost of the multicast tree. Simulation results show that the proposed algorithm is effective and efficient.

Journal ArticleDOI
TL;DR: The maximum network throughput is shown to be proportional to the optimal transmission probability, which is equal to one if the transmitter density is below a derived function of the energy-arrival rate or otherwise is smaller than one and solves a given polynomial equation.
Abstract: Designing mobiles to harvest ambient energy such as kinetic activities or electromagnetic radiation will enable wireless networks to be self-sustaining. In this paper, the spatial throughput of a mobile ad hoc network powered by energy harvesting is analyzed using a stochastic-geometry model. In this model, transmitters are distributed as a Poisson point process and energy arrives at each transmitter randomly with a uniform average rate called the energy arrival rate. Upon harvesting sufficient energy, each transmitter transmits with fixed power to an intended receiver under an outage-probability constraint for a target signal-to-interference-and-noise ratio. It is assumed that transmitters store energy in batteries with infinite capacity. By applying the random-walk theory, the probability that a transmitter transmits, called the transmission probability, is proved to be equal to the smaller of one and the ratio between the energy-arrival rate and transmission power. This result and tools from stochastic geometry are applied to maximize the network throughput for a given energy-arrival rate by optimizing transmission power. The maximum network throughput is shown to be proportional to the optimal transmission probability, which is equal to one if the transmitter density is below a derived function of the energy-arrival rate or otherwise is smaller than one and solves a given polynomial equation. Last, the limits of the maximum network throughput are obtained for the extreme cases of high energy-arrival rates and sparse/dense networks.

Journal ArticleDOI
TL;DR: In this work, the state of the art dynamic key management schemes are classified into different groups and summarized based on the evaluation metrics, and several basic evaluation metrics are introduced.