Topic
Wireless mesh network
About: Wireless mesh network is a(n) research topic. Over the lifetime, 13600 publication(s) have been published within this topic receiving 221035 citation(s). The topic is also known as: WMN.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This paper presents a detailed study on recent advances and open research issues in WMNs, followed by discussing the critical factors influencing protocol design and exploring the state-of-the-art protocols for WMNs.
Abstract: Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have minimal mobility and form the backbone of WMNs. They provide network access for both mesh and conventional clients. The integration of WMNs with other networks such as the Internet, cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor networks, etc., can be accomplished through the gateway and bridging functions in the mesh routers. Mesh clients can be either stationary or mobile, and can form a client mesh network among themselves and with mesh routers. WMNs are anticipated to resolve the limitations and to significantly improve the performance of ad hoc networks, wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless metropolitan area networks (WMANs). They are undergoing rapid progress and inspiring numerous deployments. WMNs will deliver wireless services for a large variety of applications in personal, local, campus, and metropolitan areas. Despite recent advances in wireless mesh networking, many research challenges remain in all protocol layers. This paper presents a detailed study on recent advances and open research issues in WMNs. System architectures and applications of WMNs are described, followed by discussing the critical factors influencing protocol design. Theoretical network capacity and the state-of-the-art protocols for WMNs are explored with an objective to point out a number of open research issues. Finally, testbeds, industrial practice, and current standard activities related to WMNs are highlighted.
4,121 citations
[...]
TL;DR: The per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery, can be increased dramatically under this assumption, and a form of multiuser diversity via packet relaying is exploited.
Abstract: The capacity of ad hoc wireless networks is constrained by the mutual interference of concurrent transmissions between nodes. We study a model of an ad hoc network where n nodes communicate in random source-destination pairs. These nodes are assumed to be mobile. We examine the per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery. Under this assumption, the per-user throughput can increase dramatically when nodes are mobile rather than fixed. This improvement can be achieved by exploiting a form of multiuser diversity via packet relaying.
2,698 citations
[...]
TL;DR: A new metric for routing in multi-radio, multi-hop wireless networks with stationary nodes called Weighted Cumulative ETT (WCETT) significantly outperforms previously-proposed routing metrics by making judicious use of the second radio.
Abstract: We present a new metric for routing in multi-radio, multi-hop wireless networks. We focus on wireless networks with stationary nodes, such as community wireless networks.The goal of the metric is to choose a high-throughput path between a source and a destination. Our metric assigns weights to individual links based on the Expected Transmission Time (ETT) of a packet over the link. The ETT is a function of the loss rate and the bandwidth of the link. The individual link weights are combined into a path metric called Weighted Cumulative ETT (WCETT) that explicitly accounts for the interference among links that use the same channel. The WCETT metric is incorporated into a routing protocol that we call Multi-Radio Link-Quality Source Routing.We studied the performance of our metric by implementing it in a wireless testbed consisting of 23 nodes, each equipped with two 802.11 wireless cards. We find that in a multi-radio environment, our metric significantly outperforms previously-proposed routing metrics by making judicious use of the second radio.
2,593 citations
[...]
TL;DR: The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput, and the gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
Abstract: This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
2,169 citations
[...]
01 Jan 2013
TL;DR: In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network.
Abstract: Wireless sensor networks are the networks consisting of large number of small and tiny sensor nodes. The nodes are supplied with limited power, memory and other resources and perform in-network processing. In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network. In Wireless sensor network, nodes should consume less power, memory and so data aggregation should be performed. Security is another aspect which should be present in the network. Quality of service, routing, medium access schemes all are considered in designing the protocols.
1,895 citations