scispace - formally typeset
Search or ask a question
Topic

Wireless mesh network

About: Wireless mesh network is a research topic. Over the lifetime, 13600 publications have been published within this topic receiving 221035 citations. The topic is also known as: WMN.


Papers
More filters
Proceedings ArticleDOI
29 Sep 2006
TL;DR: This paper proposes a physical-layer network coding (PNC) scheme to coordinate transmissions among nodes that makes use of the additive nature of simultaneously arriving electromagnetic (EM) waves for equivalent coding operation and demonstrates its potential for boosting network capacity.
Abstract: A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11). The goal of this paper is to show how the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC) scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM) waves for equivalent coding operation. PNC can yield higher capacity than straight-forward network coding when applied to wireless networks. We believe this is a first paper that ventures into EM-wave-based network coding at the physical layer and demonstrates its potential for boosting network capacity. PNC opens up a whole new research area because of its implications and new design requirements for the physical, MAC, and network layers of ad hoc wireless stations. The resolution of the many outstanding but interesting issues in PNC may lead to a revolutionary new paradigm for wireless ad hoc networking.

1,576 citations

Proceedings ArticleDOI
27 Aug 2007
TL;DR: This paper adopts the opposite approach; it encourages strategically picked senders to interfere, and achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.
Abstract: Traditionally, interference is considered harmful. Wireless networks strive to avoid scheduling multiple transmissions at the same time in order to prevent interference. This paper adopts the opposite approach; it encourages strategically picked senders to interfere. Instead of forwarding packets, routers forward the interfering signals. The destination leverages network-level information to cancel the interference and recover the signal destined to it. The result is analog network coding because it mixes signals not bits.So, what if wireless routers forward signals instead of packets? Theoretically, such an approach doubles the capacity of the canonical 2-way relay network. Surprisingly, it is also practical. We implement our design using software radios and show that it achieves significantly higher throughput than both traditional wireless routing and prior work on wireless network coding.

1,440 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations

Journal ArticleDOI
TL;DR: A detailed performance evaluation shows that with intelligent channel and bandwidth assignment, equipping every wireless mesh network node with just 2 NICs operating on different channels can increase the total network goodput by a factor of up to 8 compared with the conventional single-channel ad hoc network architecture.
Abstract: The IEEE 802.11 Wireless LAN standards allow multiple non-overlapping frequency channels to be used simultaneously to increase the aggregate bandwidth available to end-users. Such bandwidth aggregation capability is routinely used in infrastructure mode operation, where the traffic to and from wireless nodes is distributed among multiple interfaces of an access point or among multiple access points to balance the traffic load. However, bandwidth aggregation is rarely used in the context of multi-hop 802.11-based LANs that operate in the ad hoc mode. Most past research efforts that attempt to exploit multiple radio channels require modifications to the MAC protocol and therefore do not work with commodity 802.11 interface hardware. In this paper, we propose and evaluate one of the first multi-channel multi-hop wireless ad-hoc network architectures that can be built using standard 802.11 hardware by equipping each node with multiple network interface cards (NICs) operating on different channels. We focus our attention on wireless mesh networks that serve as the backbone for relaying end-user traffic from wireless access points to the wired network. The idea of exploiting multiple channels is particularly appealing in wireless mesh networks because of their high capacity requirements to support backbone traffic. To reap the full performance potential of this architecture, we develop a set of centralized channel assignment, bandwidth allocation, and routing algorithms for multi-channel wireless mesh networks. A detailed performance evaluation shows that with intelligent channel and bandwidth assignment, equipping every wireless mesh network node with just 2 NICs operating on different channels can increase the total network goodput by a factor of up to 8 compared with the conventional single-channel ad hoc network architecture.

1,318 citations

Book ChapterDOI
01 Jan 1999
TL;DR: It is shown that if n nodes are placed in a disc of unit area in !
Abstract: In wireless data networks each transmitter’s power needs to be high enough to reach the intended receivers, while generating minimum interference on other receivers sharing the same channel. In particular, if the nodes in the network are assumed to cooperate in routing each others’ packets, as is the case in ad hoc wireless networks, each node should transmit with just enough power to guarantee connectivity in the network. Towards this end, we derive the critical power a node in the network needs to transmit in order to ensure that the network is connected with probability one as the number of nodes in the network goes to infinity. It is shown that if n nodes are placed in a disc of unit area in ℜ2 and each node transmits at a power level so as to cover an area of πr 2 = (log n + c(n))/n, then the resulting network is asymptotically connected with probability one if and only if c(n) → +∞.

1,282 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
97% related
Wireless network
122.5K papers, 2.1M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
95% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202363
2022163
2021138
2020281
2019332
2018400