scispace - formally typeset
Search or ask a question

Showing papers on "Wireless Routing Protocol published in 2008"


Journal ArticleDOI
TL;DR: A detailed exploration of the single-copy routing space is performed in order to identify efficient single- copy solutions that can be employed when low resource usage is critical, and can help improve the design of general routing schemes that use multiple copies.
Abstract: Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc networks, etc. In this context, conventional routing schemes fail, because they try to establish complete end-to-end paths, before any data is sent. To deal with such networks researchers have suggested to use flooding-based routing schemes. While flooding-based schemes have a high probability of delivery, they waste a lot of energy and suffer from severe contention which can significantly degrade their performance. Furthermore, proposed efforts to reduce the overhead of flooding-based schemes have often been plagued by large delays. With this in mind, we introduce a new family of routing schemes that "spray" a few message copies into the network, and then route each copy independently towards the destination. We show that, if carefully designed, spray routing not only performs significantly fewer transmissions per message, but also has lower average delivery delays than existing schemes; furthermore, it is highly scalable and retains good performance under a large range of scenarios. Finally, we use our theoretical framework proposed in our 2004 paper to analyze the performance of spray routing. We also use this theory to show how to choose the number of copies to be sprayed and how to optimally distribute these copies to relays.

1,162 citations


Journal ArticleDOI
TL;DR: This paper reviews several routing protocols proposed for possible deployment of mobile ad hoc networks in military, government and commercial applications with a particular focus on security aspects, and analyses of the secure versions of the proposed protocols are discussed.
Abstract: Several routing protocols have been proposed in recent years for possible deployment of mobile ad hoc networks (MANETs) in military, government and commercial applications. In this paper, we review these protocols with a particular focus on security aspects. The protocols differ in terms of routing methodologies and the information used to make routing decisions. Four representative routing protocols are chosen for analysis and evaluation including: Ad Hoc on demand Distance Vector routing (AODV), Dynamic Source Routing (DSR), Optimized Link State Routing (OLSR) and Temporally Ordered Routing Algorithm (TORA). Secure ad hoc networks have to meet five security requirements: confidentiality, integrity, authentication, non-repudiation and availability. The analyses of the secure versions of the proposed protocols are discussed with respect to the above security requirements.

329 citations


Journal ArticleDOI
TL;DR: The state of the art in WMN metrics is analyzed and a taxonomy for WMN routing protocols is proposed and performance measurements for a WMN, deployed using various routing metrics, are presented and corroborate the analysis.
Abstract: WMNs are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Therefore, the design of algorithms that consider link quality to choose the best routes are enabling routing metrics and protocols to evolve. In this work, we analyze the state of the art in WMN metrics and propose a taxonomy for WMN routing protocols. Performance measurements for a WMN, deployed using various routing metrics, are presented and corroborate our analysis.

319 citations


Proceedings ArticleDOI
15 Sep 2008
TL;DR: A scalable routing technique based on location information, and optimized for minimum energy per bit consumption is presented, and it is shown that the protocol's performance is close to the ideal case, as the additional burden of dynamic route discovery is minimal.
Abstract: Multi-hop transmission is considered for large coverage areas in bandwidth-limited underwater acoustic networks. In this paper, we present a scalable routing technique based on location information, and optimized for minimum energy per bit consumption. The proposed Focused Beam Routing (FBR) protocol is suitable for networks containing both static and mobile nodes, which are not necessarily synchronized to a global clock. A source node must be aware of its own location and the location of its final destination, but not those of other nodes.The FBR protocol can be defined as a cross-layer approach, in which the routing protocol, the medium access control and the physical layer functionalities are tightly coupled by power control. It can be described as a distributed algorithm, in which a route is dynamically established as the data packet traverses the network towards its final destination. The selection of the next relay is made at each step of the path after suitable candidates have proposed themselves.The system performance is measured in terms of energy per bit consumption and average packet end-to-end delay. The results are compared to those obtained using pre-established routes, defined via Dijkstra's algorithm for minimal power consumption. It is shown that the protocol's performance is close to the ideal case, as the additional burden of dynamic route discovery is minimal.

308 citations


Journal ArticleDOI
TL;DR: This survey reviews Internet traffic engineering from the perspective of routing optimization, and points out some challenges in TE operation and important issues that are worthy of investigation in future research activities.
Abstract: Traffic engineering is an important mechanism for Internet network providers seeking to optimize network performance and traffic delivery. Routing optimization plays a key role in traffic engineering, finding efficient routes so as to achieve the desired network performance. In this survey we review Internet traffic engineering from the perspective of routing optimization. A taxonomy of routing algorithms in the literature is provided, dating from the advent of the TE concept in the late 1990s. We classify the algorithms into multiple dimensions: unicast/multicast, intra-/inter- domain, IP-/MPLS-based and offline/online TE schemes. In addition, we investigate some important traffic engineering issues, including robustness, TE interactions, and interoperability with overlay selfish routing. In addition to a review of existing solutions, we also point out some challenges in TE operation and important issues that are worthy of investigation in future research activities.

265 citations


Journal ArticleDOI
TL;DR: This paper utilizes the multiple paths between the source and sink pairs for QoS provisioning and converts the optimization problem as a probabilistic programming into a deterministic linear programming, which is much easier and convenient to solve.
Abstract: Sensor nodes are densely deployed to accomplish various applications because of the inexpensive cost and small size. Depending on different applications, the traffic in the wireless sensor networks may be mixed with time-sensitive packets and reliability-demanding packets. Therefore, QoS routing is an important issue in wireless sensor networks. Our goal is to provide soft-QoS to different packets as path information is not readily available in wireless networks. In this paper, we utilize the multiple paths between the source and sink pairs for QoS provisioning. Unlike E2E QoS schemes, soft-QoS mapped into links on a path is provided based on local link state information. By the estimation and approximation of path quality, traditional NP-complete QoS problem can be transformed to a modest problem. The idea is to formulate the optimization problem as a probabilistic programming, then based on some approximation technique, we convert it into a deterministic linear programming, which is much easier and convenient to solve. More importantly, the resulting solution is also one to the original probabilistic programming. Simulation results demonstrate the effectiveness of our approach.

239 citations


Journal ArticleDOI
TL;DR: This paper proposes a cooperation-based routing algorithm, namely, the minimum power cooperative routing (MPCR), which makes full use of the cooperative communications while constructing the minimum-power route, and shows that the MPCR algorithm can achieve power saving of 65.61% in regular linear networks and 29.8% inregular grid networks.
Abstract: Recently, the merits of cooperative communication in the physical layer have been explored. However, the impact of cooperative communication on the design of the higher layers has not been well-understood yet. Cooperative routing in wireless networks has gained much interest due to its ability to exploit the broadcast nature of the wireless medium in designing power efficient routing algorithms. Most of the existing cooperation based routing algorithms are implemented by finding a shortest path route first and then improving the route using cooperative communication. As such, these routing algorithms do not fully exploit the merits of cooperative communications, since the optimal cooperative route might not be similar to the shortest path route. In this paper, we propose a cooperation-based routing algorithm, namely, the minimum power cooperative routing (MPCR) algorithm, which makes full use of the cooperative communications while constructing the minimum-power route. The MPCR algorithm constructs the minimum-power route, which guarantees certain throughput, as a cascade of the minimum-power single-relay building blocks from the source to the destination. Thus, any distributed shortest path algorithm can be utilized to find the optimal cooperative route with polynomial complexity. Using analysis, we show that the MPCR algorithm can achieve power saving of 65.61% in regular linear networks and 29.8% in regular grid networks compared to the existing cooperation-based routing algorithms, where the cooperative routes are constructed based on the shortest-path routes. From simulation results, MPCR algorithm can have 37.64% power saving in random networks compared to those cooperation-based routing algorithms.

191 citations


Proceedings ArticleDOI
01 Jan 2008
TL;DR: A novel power controlled MAC protocol based on SNR in mobile Ad hoc networks is presented and simulation results demonstrate that compared to the IEEE 802.11 MAC protocol, the proposed protocol can decrease the power consumption greatly, and improve the energy utilization of mobile terminals while maintaining the throughput performance.
Abstract: The mobile Nodes in wireless Ad hoc networks are fed by batteries,so the energy limitation has become a performance bottleneck for mobile ad hoc networks.IEEE 802.11 has been used as the current standard MAC protocol for ad hoc networks.However,it has not the ability of adjusting power level dynamically,which reduces the performance of network.Power control can enhance the power efficiency of nodes,reduce the interferer of neighbor nodes and improve the performance of network.A novel power controlled MAC protocol based on SNR in mobile Ad hoc networks is presented in this paper.Simulation results demonstrate that compared to the IEEE 802.11 MAC protocol,the proposed protocol can decrease the power consumption greatly,and improve the energy utilization of mobile terminals while maintaining the throughput performance.

188 citations


Journal ArticleDOI
TL;DR: This work proposes ODSBR, the first on-demand routing protocol for ad hoc wireless networks that provides resilience to Byzantine attacks caused by individual or colluding nodes that never partitions the network and bounds the amount of damage caused by attackers.
Abstract: Ah hoc networks offer increased coverage by using multihop communication. This architecture makes services more vulnerable to internal attacks coming from compromised nodes that behave arbitrarily to disrupt the network, also referred to as Byzantine attacks. In this work, we examine the impact of several Byzantine attacks performed by individual or colluding attackers. We propose ODSBR, the first on-demand routing protocol for ad hoc wireless networks that provides resilience to Byzantine attacks caused by individual or colluding nodes. The protocol uses an adaptive probing technique that detects a malicious link after log n faults have occurred, where n is the length of the path. Problematic links are avoided by using a route discovery mechanism that relies on a new metric that captures adversarial behavior. Our protocol never partitions the network and bounds the amount of damage caused by attackers. We demonstrate through simulations ODSBR's effectiveness in mitigating Byzantine attacks. Our analysis of the impact of these attacks versus the adversary's effort gives insights into their relative strengths, their interaction, and their importance when designing multihop wireless routing protocols.

181 citations


Journal ArticleDOI
TL;DR: It is shown that the proposed scheme can significantly reduce the data traffic and improve the network lifetime and a distributed gradient algorithm designed accordingly can converge to the optimal value efficiently under all network configurations.
Abstract: An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. The objective is to maximize the network lifetime by jointly optimizing data aggregation and routing. We adopt a model to integrate data aggregation with the underlying routing scheme and present a smoothing approximation function for the optimization problem. The necessary and sufficient conditions for achieving the optimality are derived and a distributed gradient algorithm is designed accordingly. We show that the proposed scheme can significantly reduce the data traffic and improve the network lifetime. The distributed algorithm can converge to the optimal value efficiently under all network configurations.

177 citations


Proceedings ArticleDOI
18 Aug 2008
TL;DR: It is demonstrated, for the first time, that there is a local-control MAC protocol requiring only very limited knowledge about the adversary and the network that achieves a constant throughput for the non-jammed time steps under any adversarial strategy above.
Abstract: In this paper we consider the problem of designing a medium access control (MAC) protocol for single-hop wireless networks that is provably robust against adaptive adversarial jamming. The wireless network consists of a set of honest and reliable nodes that are within the transmission range of each other. In addition to these nodes there is an adversary. The adversary may know the protocol and its entire history and use this knowledge to jam the wireless channel at will at any time. It is allowed to jam a (1-epsilon)-fraction of the time steps, for an arbitrary constant epsilon>0, but it has to make a jamming decision before it knows the actions of the nodes at the current step. The nodes cannot distinguish between the adversarial jamming or a collision of two or more messages that are sent at the same time. We demonstrate, for the first time, that there is a local-control MAC protocol requiring only very limited knowledge about the adversary and the network that achieves a constant throughput for the non-jammed time steps under any adversarial strategy above. We also show that our protocol is very energy efficient and that it can be extended to obtain a robust and efficient protocol for leader election and the fair use of the wireless channel.

Proceedings ArticleDOI
26 May 2008
TL;DR: This paper focuses on the development of carry-and-forward schemes that attempt to deliver data from vehicles to fixed infrastructure nodes in an urban setting and leverages local or global knowledge of traffic statistics to carefully alternate between the Data Muling and Multihop Forwarding strategies.
Abstract: Ad hoc networks formed by traveling vehicles are envisaged to become a common platform that will support a wide variety of applications, ranging from road safety to advertising and entertainment. The multitude of vehicular applications calls for routing schemes that satisfy user-defined delay requirements while at the same time maintaining a low level of channel utilization to allow their coexistence. This paper focuses on the development of carry-and-forward schemes that attempt to deliver data from vehicles to fixed infrastructure nodes in an urban setting. The proposed algorithms leverage local or global knowledge of traffic statistics to carefully alternate between the Data Muling and Multihop Forwarding strategies, in order to minimize communication overhead while adhering to delay constraints imposed by the application. We provide an extensive evaluation of our schemes using realistic vehicular traces on a real city map.

Journal ArticleDOI
TL;DR: This paper presents the taxonomy of the multicast routing protocols, their properties and design features, and aims to aid MANETs researchers and application developers in selecting appropriate multicasts routing protocols for their work.

Proceedings ArticleDOI
08 Dec 2008
TL;DR: A Spectrum-Tree base On-Demand routing protocol (STOD-RP) is proposed where a spectrum-tree is built in each spectrum band to address the cooperation between spectrum decision and route selection in an efficient way.
Abstract: A unique challenge for routing in cognitive radio networks is the collaboration between the route selection and spectrum decision. To solve this problem, in this paper a Spectrum-Tree base On-Demand routing protocol (STOD-RP) is proposed where a spectrum-tree is built in each spectrum band. The formation of the spectrum-tree addresses the cooperation between spectrum decision and route selection in an efficient way. In addition, a new route metric is proposed as well as a fast and efficient spectrum-adaptive route recovery method. Simulation results show that our proposed STOD-RP reduces the control overhead and shortens the average end-to-end delay significantly.

Proceedings ArticleDOI
08 Dec 2008
TL;DR: CodeOR, a new protocol that uses network coding in opportunistic routing to improve throughput by transmitting a window of multiple segments concurrently, is proposed and is especially appropriate for real-time multimedia applications through the use of a small segment size to decrease decoding delay.
Abstract: Opportunistic routing significantly increases unicast throughput in wireless mesh networks by effectively utilizing the wireless broadcast medium. With network coding, opportunistic routing can be implemented in a simple and practical way without resorting to a complicated scheduling protocol. Due to constraints of computational complexity, a protocol utilizing network coding needs to perform segmented network coding, which partitions the data into multiple segments and encode only packets in the same segment. However, existing designs transmit only one segment at any given time while waiting for its acknowledgment, which degrades performance as the size of the network scales up. In this paper, we propose CodeOR, a new protocol that uses network coding in opportunistic routing to improve throughput. By transmitting a window of multiple segments concurrently, it improves the performance of existing work by a factor of two on average (and a factor of four in some cases). CodeOR is especially appropriate for real-time multimedia applications through the use of a small segment size to decrease decoding delay, and is able to further increase network throughput with a smaller packet size and a larger window size.

Journal ArticleDOI
TL;DR: An algorithmic model for wireless ad hoc and sensor networks that aims to be sufficiently close to reality as to represent practical realworld networks while at the same time being concise enough to promote strong theoretical results is studied.
Abstract: In this paper, we study an algorithmic model for wireless ad hoc and sensor networks that aims to be sufficiently close to reality as to represent practical real-world networks while at the same time being concise enough to promote strong theoretical results The quasi unit disk graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer than 1 We show that--in comparison to the cost known for unit disk graphs--the complexity results of geographic routing in this model contain the additional factor 1/d2 We prove that in quasi unit disk graphs flooding is an asymptotically message-optimal routing technique, we provide a geographic routing algorithm being most efficient in dense networks, and we show that classic geographic routing is possible with the same asymptotic performance guarantees as for unit disk graphs if d ≥ 1/√2

Proceedings ArticleDOI
15 Sep 2008
TL;DR: DIsruption REsilient Content Transport is presented, which is a content dissemination approach for ad hoc networks that exploits in-network storage and the hop-by-hop dissemination of named information objects and provides a high degree of reliability while maintaining low levels of delivery latencies and signaling and data overhead.
Abstract: Content dissemination in disrupted networks poses a big challenge, given that the current routing architectures of ad hoc networks require establishing routes from sources to destinations before content can disseminated between them. In ad hoc networks subject to disruption, lack of reliable connectivity between producers and consumers of information makes most routing protocols perform very poorly or not work at all. We present DIRECT (DIsruption REsilient Content Transport), which is a content dissemination approach for ad hoc networks that exploits in-network storage and the hop-by-hop dissemination of named information objects. Simulation experiments illustrate that DIRECT provides a high degree of reliability while maintaining low levels of delivery latencies and signaling and data overhead compared to traditional on-demand routing and epidemic routing.


Proceedings ArticleDOI
13 Apr 2008
TL;DR: This work provides important guidelines for designing routing metrics and identifies the specific properties that a routing metric must have in order to be combined with certain type of routing protocols.
Abstract: The design of a routing protocol must be based on the characteristics of its target networks. The diversity of wireless networks motivates the design of different routing metrics, capturing different aspects of wireless communications. The design of routing metrics, however, is not arbitrary since it has a great impact on the proper operation of routing protocols. Combining a wrong type of routing metrics with a routing protocol may result in routing loops and suboptimal paths. In this paper, we thoroughly study the relationship between routing metrics and routing protocols. Our work provides important guidelines for designing routing metrics and identifies the specific properties that a routing metric must have in order to be combined with certain type of routing protocols.

Proceedings ArticleDOI
01 Dec 2008
TL;DR: In this article, the authors proposed an advanced low-energy adaptive clustering hierarchy (ALEACH), a clustering-based protocol architecture where nodes make autonomous decision without any central intervention, and proposed a new cluster head selection algorithm that enables selecting best suited node for cluster head, algorithms for adaptive clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes.
Abstract: A wireless network consisting of hundreds or thousands of cheap microsensor nodes allow users accurately monitor the characteristics of the remote environment or detect an event As the sensor nodes have limited energy resources, so the routing protocol designed for the wireless sensor networks should be energy efficient and provide low latency For this reason, we propose advanced low-energy adaptive clustering hierarchy (ALEACH), a clustering-based protocol architecture where nodes make autonomous decision without any central intervention ALEACH proposes a new cluster head selection algorithms that enables selecting best suited node for cluster head, algorithms for adaptive clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes Simulation results show that ALEACH can improve system life time and energy efficiency in terms of different simulation performance metrics

Patent
18 Aug 2008
TL;DR: In this article, the authors describe a routing process for transmitting a packet through a node in the network based on available information on the network topology and/or the contents of the packet.
Abstract: The systems and methods described herein include adaptive routing processes for packet-based wireless communication networks. This routing approach works both in MANETs (when a contemporaneous end-to-end path is available) and in DTNs (when a contemporaneous end to end path is not available, but one of formed over space and time). In particular, the methods include adaptively selecting a routing process for transmitting a packet through a node in the network based on available information on the network topology and/or the contents of the packet.

Journal ArticleDOI
TL;DR: The decomposition is demonstrated by implementing an overlay construction toolkit Overlay Weaver, which is the first feasibility proof of the layered model by supporting multiple algorithms and the higher-level services and the resulting algorithm implementations work on a real TCP/IP network as it is.

Proceedings ArticleDOI
01 Dec 2008
TL;DR: LEACH-Mobile protocol has been enhanced based on a mobility metric "remoteness" for cluster head election to ensure high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving.
Abstract: Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric "remoteness" for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-mobile-enhanced protocol with LEACH-mobile. Results show that inclusion of neighbouring node information improves the routing protocol.

Proceedings ArticleDOI
26 May 2008
TL;DR: This paper is the first to present and rigorously analyze a distributed dominating set protocol for wireless ad-hoc networks with O(1) approximation bound based on the physical interference model, which accounts for interference generated by all nodes in the network.
Abstract: Dealing with interference is one of the primary challenges to solve in the design of protocols for wireless ad-hoc networks. Most of the work in the literature assumes localized or hop-based interference models in which the effect of interference is neglected beyond a certain range from the transmitter. However, interference is a more complex phenomenon that cannot, in general, be captured by localized models, implying that protocols based on such models are not guaranteed to work in practice. This paper is the first to present and rigorously analyze a distributed dominating set protocol for wireless ad-hoc networks with O(1) approximation bound based on the physical interference model, which accounts for interference generated by all nodes in the network. The proposed protocol is fully distributed, randomized, and extensively uses physical carrier sensing to reduce message overhead. It does not need node identifiers or any kind of prior information about the system, and all messages are of constant size (in bits). We prove that, by appropriately choosing the threshold for physical carrier sensing, the protocol stabilizes within a logarithmic number of communication rounds, w.h.p., which is faster than the runtime of any known distributed protocol without prior knowledge about the system under any wireless model that does not abstract away collisions.

Proceedings ArticleDOI
13 Apr 2008
TL;DR: It is shown that a cubic routing stretch constitutes a lower bound for any local memoryless routing algorithm, and several randomized geographic routing algorithms which work well for 3D network topologies are proposed and analyzed.
Abstract: We reconsider the problem of geographic routing in wireless ad hoc networks. We are interested in local, memoryless routing algorithms, i.e. each network node bases its routing decision solely on its local view of the network, nodes do not store any message state, and the message itself can only carry information about O(1) nodes. In geographic routing schemes, each network node is assumed to know the coordinates of itself and all adjacent nodes, and each message carries the coordinates of its target. Whereas many of the aspects of geographic routing have already been solved for 2D networks, little is known about higher-dimensional networks. It has been shown only recently that there is in fact no local memoryless routing algorithm for 3D networks that delivers messages deterministically. In this paper, we show that a cubic routing stretch constitutes a lower bound for any local memoryless routing algorithm, and propose and analyze several randomized geographic routing algorithms which work well for 3D network topologies. For unit ball graphs, we present a technique to locally capture the surface of holes in the network, which leads to 3D routing algorithms similar to the greedy-face-greedy approach for 2D networks.

01 Jan 2008
TL;DR: The studies have shown that reactive protocols perform better than proactive protocols, and DSR has performed well for the performance parameters namely delivery ratio and routing overload while AODV performed better in terms of average delay.
Abstract: Summary The Efficient routing protocols can provide significant benefits to mobile ad hoc networks, in terms of both performance and reliability. Many routing protocols for such networks have been proposed so far. Amongst the most popular ones are Ad hoc Ondemand Distance Vector (AODV), Destination-Sequenced Distance-Vector Routing protocol (DSDV), Dynamic Source Routing Protocol (DSR), and Optimum Link State Routing (OLSR). Despite the popularity of those protocols, research efforts have not focused much in evaluating their performance when applied to variable bit rate (VBR). In this paper we present our observations regarding the performance comparison of the above protocols for VBR in mobile ad hoc networks (MANETs). We perform extensive simulations, using NS-2 simulator. Our studies have shown that reactive protocols perform better than proactive protocols. Further DSR has performed well for the performance parameters namely delivery ratio and routing overload while AODV performed better in terms of average delay.

Journal ArticleDOI
TL;DR: This paper considers (p, q )-Epidemic Routing, a class of store-carry-forward routing schemes, for sparsely populated mobile ad hoc networks, taking account of the recovery process that deletes unnecessary packets from the network.
Abstract: This paper considers (p, q )-Epidemic Routing, a class of store-carry-forward routing schemes, for sparsely populated mobile ad hoc networks. Our forwarding scheme includes Two-Hop Forwarding and the conventional Epidemic Routing as special cases. In such forwarding schemes, the original packet is copied many times and its packet copies spread over the network. Therefore those packet copies should be deleted after a packet reaches the destination. We analyze the performance of (p, q)-Epidemic Routing with VACCINE recovery scheme. Unlike most of the existing studies, we discuss the performance of (p, q)-Epidemic Routing in depth, taking account of the recovery process that deletes unnecessary packets from the network.

Proceedings ArticleDOI
26 May 2008
TL;DR: This paper proposes to use the expected minimum delay (EMD) as a new delivery probability metric in DTNs with repetitive but non-deterministic mobility and proposes a proposed EMD-based routing protocol, called routing in cyclic MobiSpace (RCM), which outperforms several existing opportunistic routing protocols when simulated using both real and synthetic traces.
Abstract: A key challenge of routing in delay tolerant networks (DTNs) is finding routes that have high delivery rates and low end-to-end delays. When oracles are not available for future connectivity, opportunistic routing is preferred in DTNs, in which messages are forwarded to nodes with higher delivery probabilities. We observe that real objects have repetitive motions, but no prior research work has investigated the cyclic delivery probability of messages between nodes. In this paper, we propose to use the expected minimum delay (EMD) as a new delivery probability metric in DTNs with repetitive but non-deterministic mobility. Specifically, we model the network as a probabilistic time-space graph with historical contact information or prior knowledge about the network. We then translate it into a probabilistic state-space graph in which the time dimension is removed. Finally, we apply the Markov decision process to derive the EMDs of the messages at particular times. Our proposed EMD-based routing protocol, called routing in cyclic MobiSpace (RCM), outperforms several existing opportunistic routing protocols when simulated using both real and synthetic traces.

Proceedings ArticleDOI
31 Mar 2008
TL;DR: A modification on AODV as MANET routing protocol to make it adaptive for VANET, which has used direction as most important parameter to select next hop during a route discovery phase.
Abstract: VANET is new generation of ad hoc networks that implement between vehicles on a road. Because of high mobility, routing in VANET has more problems than MANET. Thereby, in this paper we propose a modification on AODV as MANET routing protocol to make it adaptive for VANET. When a node is mobile, it has three mobility parameters: position, direction and speed. In our method, we have used direction as most important parameter to select next hop during a route discovery phase. With respect to mobility model, if nodes has same direction with source and/or destination nodes, our solution might selects them as a next hop. Position is another parameter that we used for next hop selection.

Journal ArticleDOI
TL;DR: This paper contains an introduction to the problem field of geographic routing, a specific routing algorithm based on a synthesis of the greedy forwarding and face routing approaches, and an algorithmic analysis of the presented algorithm from both a worst-case and an average-case perspective.
Abstract: The one type of routing in ad hoc and sensor networks that currently appears to be most amenable to algorithmic analysis is geographic routing. This paper contains an introduction to the problem field of geographic routing, presents a specific routing algorithm based on a synthesis of the greedy forwarding and face routing approaches, and provides an algorithmic analysis of the presented algorithm from both a worst-case and an average-case perspective.