scispace - formally typeset
Search or ask a question

Showing papers on "Wireless Routing Protocol published in 2016"


Journal ArticleDOI
TL;DR: The most important innovation of ActiveTrust is that it avoids black holes through the active creation of a number of detection routes to quickly detect and obtain nodal trust and thus improve the data route security.
Abstract: Wireless sensor networks (WSNs) are increasingly being deployed in security-critical applications Because of their inherent resource-constrained characteristics, they are prone to various security attacks, and a black hole attack is a type of attack that seriously affects data collection To conquer that challenge, an active detection-based security and trust routing scheme named ActiveTrust is proposed for WSNs The most important innovation of ActiveTrust is that it avoids black holes through the active creation of a number of detection routes to quickly detect and obtain nodal trust and thus improve the data route security More importantly, the generation and the distribution of detection routes are given in the ActiveTrust scheme, which can fully use the energy in non-hotspots to create as many detection routes as needed to achieve the desired security and energy efficiency Both comprehensive theoretical analysis and experimental results indicate that the performance of the ActiveTrust scheme is better than that of the previous studies ActiveTrust can significantly improve the data route success probability and ability against black hole attacks and can optimize network lifetime

290 citations


Journal ArticleDOI
TL;DR: Simulation results show that GEDAR significantly improves the network performance when compared with the baseline solutions, even in hard and difficult mobile scenarios of very sparse and very dense networks and for high network traffic loads.
Abstract: Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea's surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void regions. Simulation results show that GEDAR significantly improves the network performance when compared with the baseline solutions, even in hard and difficult mobile scenarios of very sparse and very dense networks and for high network traffic loads.

265 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare two routing algorithms for ad hoc networks: optimized link-state routing (OLSR) and predictive OLSR (P-OLSR), which takes advantage of the Global Positioning System (GPS) information available on board.
Abstract: This paper reports experimental results on self-organizing wireless networks carried by small flying robots. Flying ad hoc networks (FANETs) composed of small unmanned aerial vehicles (UAVs) are flexible, inexpensive, and fast to deploy. This makes them a very attractive technology for many civilian and military applications. Due to the high mobility of the nodes, maintaining a communication link between the UAVs is a challenging task. The topology of these networks is more dynamic than that of typical mobile ad hoc networks (MANETs) and of typical vehicle ad hoc networks. As a consequence, the existing routing protocols designed for MANETs partly fail in tracking network topology changes. In this paper, we compare two different routing algorithms for ad hoc networks: optimized link-state routing (OLSR) and predictive OLSR (P-OLSR). The latter is an OLSR extension that we designed for FANETs; it takes advantage of the Global Positioning System (GPS) information available on board. To the best of our knowledge, P-OLSR is currently the only FANET-specific routing technique that has an available Linux implementation. We present results obtained by both media-access-control (MAC) layer emulations and real-world experiments. In the experiments, we used a testbed composed of two autonomous fixed-wing UAVs and a node on the ground. Our experiments evaluate the link performance and the communication range, as well as the routing performance. Our emulation and experimental results show that P-OLSR significantly outperforms OLSR in routing in the presence of frequent network topology changes.

242 citations


Journal ArticleDOI
TL;DR: It is observed that a hybrid routing protocol is the best choice for VANETs in both urban and highway environments, and the pros and cons for each routing protocol are presented.
Abstract: Position-based routing is considered to be a very promising routing strategy for communication within vehicular ad hoc networks (VANETs), due to the fact that vehicular nodes can obtain position information from onboard global positioning system receivers and acquire global road layout information from an onboard digital map. Position-based routing protocols, which are based mostly on greedy forwarding, are well-suited to the highly dynamic and rapid-changing network topology of VANETs. In this paper, we outline the background and the latest development in VANETs and survey the state-of-the-art routing protocols previously used in VANETs. We present the pros and cons for each routing protocol, and make a detailed comparison. We also discuss open issues, challenges and future research directions. It is observed that a hybrid routing protocol is the best choice for VANETs in both urban and highway environments.

240 citations


Journal ArticleDOI
TL;DR: It is argued that by carefully considering spatial reusability of the wireless communication media, one can tremendously improve the end-to-end throughput in multi-hop wireless networks and compare them with existing single-path routing and anypath routing protocols, respectively.
Abstract: In the problem of routing in multi-hop wireless networks, to achieve high end-to-end throughput, it is crucial to find the “best” path from the source node to the destination node. Although a large number of routing protocols have been proposed to find the path with minimum total transmission count/time for delivering a single packet, such transmission count/time minimizing protocols cannot be guaranteed to achieve maximum end-to-end throughput. In this paper, we argue that by carefully considering spatial reusability of the wireless communication media, we can tremendously improve the end-to-end throughput in multi-hop wireless networks. To support our argument, we propose spatial reusability-aware single-path routing (SASR) and anypath routing (SAAR) protocols, and compare them with existing single-path routing and anypath routing protocols, respectively. Our evaluation results show that our protocols significantly improve the end-to-end throughput compared with existing protocols. Specifically, for single-path routing, the median throughput gain is up to 60 percent, and for each source-destination pair, the throughput gain is as high as $5.3\times$ ; for anypath routing, the maximum per-flow throughput gain is 71.6 percent, while the median gain is up to 13.2 percent.

186 citations


Journal ArticleDOI
22 Mar 2016-Sensors
TL;DR: This is the first paper that introduces intelligent algorithm-based UASN routing protocols, and all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layerDesign routing protocol and the intelligent algorithm based routing protocol.
Abstract: Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

166 citations


Journal ArticleDOI
TL;DR: A new clustering-based collaborative multi-hop cognitive routing algorithm is proposed to attain better network performance and takes into account the interference among nodes including primary and secondary users.
Abstract: The collaboration of nodes in cognitive wireless networks is a large challenge This paper studies the collaborative multi-hop routing in cognitive networks We propose a new algorithm to construct the collaborative routing in multi-hop cognitive networks Our algorithm takes into account the interference among nodes including primary and secondary users The clustering and collaboration are exploited to improve the performance of collaborative routing in multi-hop cognitive wireless networks with multiple primary and secondary users By analyzing the maximum transmission distance, collaborations, transmission angle control and power control, and channel allocation, we propose a new clustering-based collaborative multi-hop cognitive routing algorithm to attain better network performance Simulation results show that our approach is feasible and effective

159 citations



Journal ArticleDOI
TL;DR: A priority-based frame selection scheme to suppress the number of redundant data transmissions between sensor nodes and the UAV and a novel routing protocol to reduce the transmission distances between senders and receivers is presented.
Abstract: This paper proposes a novel data acquisition framework in sensor networks using an unmanned aerial vehicle (UAV) with the goal of increasing the efficiency of the data gathering efforts. To maximize the system throughput, we introduce a priority-based frame selection scheme to suppress the number of redundant data transmissions between sensor nodes and the UAV. Toward this goal, we classify the nodes inside the UAV's coverage area into different frames according to their locations. Taking advantage of the mobility of the UAV, we assign different transmission priorities to nodes in different frames. To do that, we introduce an adjustment to the contention window value used in IEEE 802.11 MAC, thereby defining a lower contention window range to the frame with higher priority (urgent area) and a higher contention window range to the frame with lower priority (less important area). The proposed framework leads to a reduction in packet collisions and, at the same time, minimizes the packet loss originated from nodes in the rear-side of the UAV when the UAV moves in the forward direction. To optimize the networks' energy consumption, we present a novel routing protocol based on the aforementioned framework. By leveraging the proposed framework and routing algorithm, we aim to reduce the transmission distances between senders and receivers. A shorter distance leads to better channel quality and energy savings, as is verified by our simulation studies and results.

148 citations


Journal ArticleDOI
TL;DR: This paper articulate this problem and classify current routing protocols for WSNs into two categories according to their orientation toward either homogeneous or heterogeneous W SNs, further classified into static and mobile ones.
Abstract: Due to a battery constraint in wireless sensor networks (WSNs), prolonging their lifetime is important. Energy-efficient routing techniques for WSNs play a great role in doing so. In this paper, we articulate this problem and classify current routing protocols for WSNs into two categories according to their orientation toward either homogeneous or heterogeneous WSNs. They are further classified into static and mobile ones. We give an overview of these protocols in each category by summarizing their characteristics, limitations, and applications. Finally, some open issues in energy-efficient routing protocol design for WSNs are indicated.

148 citations


Journal ArticleDOI
TL;DR: Simulation results validate that the E-CARP technique can decrease the communication cost significantly and increase the network capability to a certain extent.
Abstract: With the advance of the Internet of Underwater Things, smart things are deployed under the water and form the underwater wireless sensor networks (UWSNs), to facilitate the discovery of vast unexplored ocean volume. A routing protocol, which is not expensive in packets forwarding and energy consumption, is fundamental for sensory data gathering and transmitting in UWSNs. To address this challenge, this paper proposes Enhanced CARP (E-CARP), which is an enhanced version of the channel-aware routing protocol (CARP) developed by S. Basagni et al. , to achieve the location-free and greedy hop-by-hop packet forwarding strategy. In general, CARP does not consider the reusability of previously collected sensory data to support certain domain applications afterward, which induces data packets forwarding which may not be beneficial to applications. Besides, the PING - PONG strategy in CARP can be simplified for selecting the most appropriate relay node at each time point, when the network topology is relatively steady. These two research problems have been addressed by our E-CARP. Simulation results validate that our technique can decrease the communication cost significantly and increase the network capability to a certain extent.

Journal ArticleDOI
TL;DR: The results show that the multihop routing in JCR may lead to the unbalanced CH selection, and the solution is provided to optimize the network lifetime by considering the gradient of one-hop neighbor nodes in the setting of backoff timer.
Abstract: For data collection in large-scale wireless sensor networks (WSNs), dynamic clustering provides a scalable and energy-efficient solution, which uses cluster head (CH) rotation and cluster range assignment algorithms to balance the energy consumption. Nevertheless, most existing works consider the clustering and routing as two isolated issues, which is harmful to the connectivity and energy efficiency of the network. In this paper, we provide a detailed analysis on the relations between clustering and routing, and then propose a joint clustering and routing (JCR) protocol for reliable and efficient data collection in large-scale WSN. JCR adopts the backoff timer and gradient routing to generate connected and efficient intercluster topology with the constraint of maximum transmission range. The relations between clustering and routing in JCR are further exploited by theoretical and numerical analyses. The results show that the multihop routing in JCR may lead to the unbalanced CH selection. Then, the solution is provided to optimize the network lifetime by considering the gradient of one-hop neighbor nodes in the setting of backoff timer. Theoretical analysis and simulation results prove the connectivity and efficiency of the network topology generated by JCR.

Journal ArticleDOI
TL;DR: This work analyzes the extent to which RPL has lived up to the expectations defined by the IETF requirements, and ties the analysis to current trends, identifying the challenges RPL must face to remain on the forefront of IoT technology.
Abstract: RPL, the IPv6 Routing Protocol for low-power and lossy networks, is considered the de facto routing protocol for the Internet of Things (IoT). Since its standardization, RPL has contributed to the advancement of communications in the world of tiny, embedded networking devices by providing, along with other standards, a baseline architecture for IoT. Several years later, we analyze the extent to which RPL has lived up to the expectations defined by the IETF requirements, and tie our analysis to current trends, identifying the challenges RPL must face to remain on the forefront of IoT technology.

Journal ArticleDOI
TL;DR: A novel cluster-based routing protocol called ABC-SD that exploits the biologically inspired fast and efficient searching features of the Artificial Bee Colony metaheuristic to build low-power clusters and a realistic energy model is adopted in the considered network model.

Journal ArticleDOI
01 Apr 2016
TL;DR: An Improved Harmony Search Based Energy Efficient Routing Algorithm for WSNs is proposed, which is based on harmony search (HS) algorithm (a meta-heuristic) and an objective function model that considers both the energy consumption and the length of path is developed.
Abstract: Graphical abstractDisplay Omitted HighlightsA new encoding of harmony memory for routing in WSNs has been proposed.A new generation method of a new harmony for routing in WSNs has been proposed.The dynamic adaptation is introduced for the parameter HMCR to improve the performance of the proposed routing algorithm.An effective local search strategy is proposed to improve the convergence speed and the accuracy of the proposed routing algorithm.An energy efficient objective function model is proposed. Wireless sensor networks (WSNs) is one of the most important technologies in this century. As sensor nodes have limited energy resources, designing energy-efficient routing algorithms for WSNs has become the research focus. And because WSNs routing for maximizing the network lifetime is a NP-hard problem, many researchers try to optimize it with meta-heuristics. However, due to the uncertain variable number and strong constraints of WSNs routing problem, most meta-heuristics are inappropriate in designing routing algorithms for WSNs. This paper proposes an Improved Harmony Search Based Energy Efficient Routing Algorithm (IHSBEER) for WSNs, which is based on harmony search (HS) algorithm (a meta-heuristic). To address the WSNs routing problem with HS algorithm, several key improvements have been put forward: First of all, the encoding of harmony memory has been improved based on the characteristics of routing in WSNs. Secondly, the improvisation of a new harmony has also been improved. We have introduced dynamic adaptation for the parameter HMCR to avoid the prematurity in early generations and strengthen its local search ability in late generations. Meanwhile, the adjustment process of HS algorithm has been discarded to make the proposed routing algorithm containing less parameters. Thirdly, an effective local search strategy is proposed to enhance the local search ability, so as to improve the convergence speed and the accuracy of routing algorithm. In addition, an objective function model that considers both the energy consumption and the length of path is developed. The detailed descriptions and performance test results of the proposed approach are included. The experimental results clearly show the advantages of the proposed routing algorithm for WSNs.

Journal ArticleDOI
TL;DR: The proposed protocol PDORP has the characteristics of both power efficient gathering sensor information system and DSR routing protocols, and hybridization of genetic algorithm and bacterial foraging optimization is applied to proposed routing protocol to identify energy efficient optimal paths.
Abstract: Energy consumption is one of the constraints in wireless sensor networks (WSNs). The routing protocols are the hot areas to address quality-of-service (QoS) related issues, viz., energy consumption, network lifetime, network scalability, and packet overhead. The key issue in WSN is that these networks suffer from the packet overhead, which is the root cause of more energy consumption and degrade the QoS in sensor networks. In WSN, there are several routing protocols, which are used to enhance the performance of the network. Out of those protocols, dynamic source routing (DSR) protocol is more suitable in terms of small energy density, but sometimes when the mode of a node changes from active to sleep, the efficiency decreases as the data packets need to wait at the initial point, where the packet has been sent and this increases the waiting time and end-to-end delay of the packets, which leads to increase in energy consumption. Our problem is to identify the dead nodes and to choose another suitable path so that the data transmission becomes smoother and less energy gets conserved. In order to resolve these issues, we propose directional transmission-based energy aware routing protocol named PDORP. The proposed protocol PDORP has the characteristics of both power efficient gathering sensor information system and DSR routing protocols. In addition, hybridization of genetic algorithm and bacterial foraging optimization is applied to proposed routing protocol to identify energy efficient optimal paths. The performance analysis, comparison through a hybridization approach of the proposed routing protocol, gives better result comprising less bit error rate, less delay, less energy consumption, and better throughput, which leads to better QoS and prolong the lifetime of the network. Moreover, the computation model is adopted to evaluate and compare the performance of the both routing protocols using soft computing techniques.

Journal ArticleDOI
TL;DR: An energy efficient clustering mechanism, based on artificial bee colony algorithm and factional calculus is proposed in this paper to maximize the network energy and life time of nodes by optimally selecting cluster-head.
Abstract: Due to the promising application of collecting information from remote or inaccessible location, wireless sensor networks pose big challenge for data routing to maximize the communication with more energy efficient. Literature presents different cluster-based energy aware routing protocol for maximizing the life time of sensor nodes. Accordingly, an energy efficient clustering mechanism, based on artificial bee colony algorithm and factional calculus is proposed in this paper to maximize the network energy and life time of nodes by optimally selecting cluster-head. The hybrid optimization algorithm called, multi-objective fractional artificial bee colony is developed to control the convergence rate of ABC with the newly designed fitness function which considered three objectives like, energy consumption, distance travelled and delays to minimize the overall objective. The performance of the proposed FABC-based cluster head selection is compared with LEACH, PSO and ABC-based routing using life time, and energy. The results proved that the proposed FABC maximizes the energy as well as life time of nodes as compared with existing protocols.

Journal ArticleDOI
TL;DR: An energy-efficient routing algorithm for software-defined WSNs that performs well over other comparative algorithms under various scenarios and an efficient particle swarm optimization algorithm to tackle the NP-hard problem.
Abstract: Recent significant research on wireless sensor networks (WSNs) has led to the widespread adoption of software-defined WSNs (SDWSNs), which can be reconfigured even after deployment. In this paper, we propose an energy-efficient routing algorithm for SDWSNs. In this algorithm, to make the network to be functional, control nodes are selected to assign different tasks dynamically. The selection of control nodes is formulated as an NP-hard problem, taking into consideration of the residual energy of the nodes and the transmission distance. To tackle the NP-hard problem, an efficient particle swarm optimization algorithm is proposed. Simulation results show that the proposed algorithm performs well over other comparative algorithms under various scenarios.

Journal ArticleDOI
TL;DR: This paper employs the ant colony optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type, and extends the VANet-oriented evolving graph (VoEG) model to perform plausibility checks on the routing control messages exchanged among vehicles.
Abstract: Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In vehicular ad hoc networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the ant colony optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented evolving graph (VoEG) model to perform plausibility checks on the routing control messages exchanged among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service.

Proceedings ArticleDOI
01 Dec 2016
TL;DR: The concept of rank threshold along with hash chain authentication technique to deal with internal attacks like sinkhole, black hole, selective forwarding attacks etc is introduced.
Abstract: Data transportation and routing in Internet of Things (IoT) is a challenging issue where massive data collection and gathering are predictable. The Routing Protocol for Low- power and Lossy Networks (RPL) is one of the best candidates to ensure routing in 6LoWPAN networks. However, RPL is vulnerable to a number of attacks related to exchanged control messages. In this paper, we propose a new secure routing protocol based on RPL referred to as Secure-RPL (SRPL). The main aim of SRPL is to prevent misbehaving nodes from maliciously changing control message values such as the rank of a node that may disturb a network by creating a fake topology. We introduce the concept of rank threshold along with hash chain authentication technique to deal with internal attacks like sinkhole, black hole, selective forwarding attacks etc. Simulation results show that SRPL is robust and resistant to this kind of attacks based on malicious manipulation of RPL metrics.

Journal ArticleDOI
TL;DR: SCRP is a distributed routing protocol that computes E2ED for the entire routing path before sending data messages, and results show that SCRP outperforms some of the well-known protocols in literature.
Abstract: This paper addresses the issue of selecting routing paths with minimum end-to-end delay (E2ED) for nonsafety applications in urban vehicular ad hoc networks (VANETs). Most existing schemes aim at reducing E2ED via greedy-based techniques (i.e., shortest path, connectivity, or number of hops), which make them prone to the local maximum problem and to data congestion, leading to higher E2ED. As a solution, we propose SCRP, which is a distributed routing protocol that computes E2ED for the entire routing path before sending data messages. To do so, SCRP builds stable backbones on road segments and connects them at intersections via bridge nodes. These nodes assign weights to road segments based on the collected information of delay and connectivity. Routes with the lowest aggregated weights are selected to forward data packets. Simulation results show that SCRP outperforms some of the well-known protocols in literature.


Journal ArticleDOI
01 Aug 2016-Optik
TL;DR: In this work, an attempt is carried out to assess the diverse hierarchical routing protocols, developed from LEACH and is extended to other presented routing protocols like TEEN, APTEEN, and PEGASIS.

Journal ArticleDOI
TL;DR: This paper begins with the challenges and requirements in the design of WMSN routing, followed by an exhaustive survey on routing from the perspective of application requirements and key techniques, that is, QoS provisioning, multimedia awareness, energy efficiency, congestion avoidance, bandwidth optimization.

Journal ArticleDOI
TL;DR: This paper proposes a novel energy-efficient region-based routing protocol (ER-RPL), which achieves energy- efficient data delivery without compromising reliability and the key of energy saving.
Abstract: Routing plays an important role in the overall architecture of the Internet of Things. IETF has standardized the RPL routing protocol to provide the interoperability for low-power and lossy networks (LLNs). LLNs cover a wide scope of applications, such as building automation, industrial control, healthcare, and so on. LLNs applications require reliable and energy-efficient routing support. Point-to-point (P2P) communication is a fundamental requirement of many LLNs applications. However, traditional routing protocols usually propagate throughout the whole network to discover a reliable P2P route, which requires large amount energy consumption. Again, it is challenging to achieve both reliability and energy-efficiency simultaneously, especially for LLNs. In this paper, we propose a novel energy-efficient region-based routing protocol (ER-RPL), which achieves energy-efficient data delivery without compromising reliability. In contrast of traditional routing protocols where all nodes are required for route discovery, the proposed scheme only requires a subset of nodes to do the job, which is the key of energy saving. Our theoretical analysis and extensive simulation studies demonstrate that ER-RPL has a great performance superiority over two conventional benchmark protocols, i.e., RPL and P2P-RPL.

Journal ArticleDOI
TL;DR: The routing problems are categorized and the routing-related optimization problems are examined and the optimization of the routing algorithms and the meta-heuristic study of routing optimization are explored.
Abstract: Routing in Wireless Sensor Networks (WSNs) plays a significant role in the field of environment-oriented monitoring, traffic monitoring, etc. Here, wide contributions that are made toward routing in WSN are explored. The paper mainly aims to categorize the routing problems and examines the routing-related optimization problems. For achieving the motive, 50 papers from the standard journals are collected and primarily reviewed in a chronological way. Later, various features that are related to energy, security, speed and reliability problems of routing are discussed. Subsequently, the literature is analyzed based on the simulation environment and experimental setup, awareness over the Quality of Service (QoS) and the deployment against various applications. In addition, the optimization of the routing algorithms and the meta-heuristic study of routing optimization are explored. Routing is a vast area with numerous unsolved issues and hence, various research gaps along with future directions are also presented.

Journal ArticleDOI
TL;DR: This work proposes classifying candidate set selection procedures into sender-side, receiver- side, and hybrid approaches, and candidate coordination procedures into timer-based and control-packet-based approaches and argues that those characteristics should be considered during the design of opportunistic routing protocols for different scenarios in underwater sensor networks.
Abstract: The unique characteristics of the underwater acoustic channel impose many challenges that limit the utilization of underwater sensor networks. In this context, opportunistic routing, which has been extensively investigated in terrestrial wireless ad hoc network scenarios, has greater potential for mitigating drawbacks from underwater acoustic communication and improving network performance. In this work, we discuss the two main building blocks for the design of opportunistic routing protocols for underwater sensor networks: candidate set selection and candidate coordination procedures. We propose classifying candidate set selection procedures into sender-side, receiver-side, and hybrid approaches, and candidate coordination procedures into timer-based and control-packet-based approaches. Based on this classification, we discuss particular characteristics of each approach and how they relate to underwater acoustic communication. Furthermore, we argue that those characteristics should be considered during the design of opportunistic routing protocols for different scenarios in underwater sensor networks.

Journal ArticleDOI
TL;DR: The results of the multiple simulations were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless Sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.
Abstract: Reducing the energy consumption of network nodes is one of the most important problems for routing in wireless sensor networks because of the battery limitation in each sensor. This paper presents a new ant colony optimization based routing algorithm that uses special parameters in its competency function for reducing energy consumption of network nodes. In this new proposed algorithm called life time aware routing algorithm for wireless sensor networks (LTAWSN), a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. Finally, with the results of the multiple simulations we were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.

Journal ArticleDOI
TL;DR: A congestion avoidance multipath routing protocol which uses composite routing metrics based on RPL, named CA-RPL, which can effectively alleviate the network congestion in the network with poor link quality and large data traffic and significantly improve the performance of LLNs.
Abstract: Designing routing protocols in Low power and Lossy Networks (LLNs) imposes great challenges. In emergency scenarios, the large and rapid data traffic caused by emergencies will lead to network congestion and bring about significant packet loss and delay. Routing protocol for LLNs (RPL) is the IETF standard for IPv6 routing in LLNs. The basic version of RPL uses Expected Transmission Count (ETX) as the default routing metric; it cannot solve the problem of sudden large data traffic. In this paper, we propose a congestion avoidance multipath routing protocol which uses composite routing metrics based on RPL, named CA-RPL. A routing metric for RPL that minimized the average delay towards the DAG root is proposed, and the weight of each path is computed by four metrics. The mechanism is explained and its performance is evaluated through simulation experiments based on Contiki. Simulation results show that the proposed CA-RPL reduces the average time delay by about 30% compared to original RPL when the interpacket interval is short and has almost 20% reduction in packet loss ratio. The CA-RPL can effectively alleviate the network congestion in the network with poor link quality and large data traffic and significantly improve the performance of LLNs.

Journal ArticleDOI
TL;DR: This paper analytically characterize the physical layer security performance of any chosen multihop path using the end-to-end secure connection probability (SCP) for both colluding and noncolluding eavesdroppers and derives accurate approximations of the SCP.
Abstract: In this paper, we study the problem of secure routing in a multihop wireless ad-hoc network in the presence of randomly distributed eavesdroppers. Specifically, the locations of the eavesdroppers are modeled as a homogeneous Poisson point process (PPP) and the source-destination pair is assisted by intermediate relays using the decode-and-forward (DF) strategy. We analytically characterize the physical layer security performance of any chosen multihop path using the end-to-end secure connection probability (SCP) for both colluding and noncolluding eavesdroppers. To facilitate finding an efficient solution to secure routing, we derive accurate approximations of the SCP. Based on the SCP approximations, we study the secure routing problem, which is defined as finding the multihop path having the highest SCP. A revised Bellman–Ford algorithm is adopted to find the optimal path in a distributed manner. Simulation results demonstrate that the proposed secure routing scheme achieves nearly the same performance as exhaustive search.