scispace - formally typeset
Search or ask a question
Topic

Withania somnifera

About: Withania somnifera is a research topic. Over the lifetime, 2116 publications have been published within this topic receiving 43404 citations. The topic is also known as: Ashwaganda & Indian ginseng.


Papers
More filters
Journal ArticleDOI
TL;DR: The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotypes-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail.
Abstract: Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control various pathways involving such metabolic reactions in the plant. As a representative experimental validation of this notion, WSCYP93Id was heterologouly expressed in Escherichia coli and catalytic capabilities of the recombinant WSCYP93Id protein were evaluated using withanolides as substrates. Optimized assays with some major withanolides (withanone, withaferin A and withanolide A) involving spectrophotometric as well as high-pressure liquid chromatography (HPLC)-based evaluation (product detection) of the reactions showed conversion of withaferin A to a hydroxylated product. The genes belonging to other CYP group are possibly involved in some specialised synthesis such as that of brassinosteroids.

28 citations

Journal ArticleDOI
TL;DR: The findings demonstrate genetic engineering of isoprenoid pathway in W. somnifera resulting in enhanced production of withanolides, and also provide insights into such metabolic pathways for their manipulation to improve the pharmacological content of different medicinally important plants.
Abstract: Genetic engineering of secondary metabolic pathways is an emerging area of research for production and improvement of natural products in plant biotechnology. Here, we describe a systematic approach to manipulate a key regulatory step of isoprenoid biosynthetic pathway in Withania somnifera to study its effect on withanolide production. We generated T0 W. somnifera plants overexpressing squalene synthase (WsSQS) by Agrobacterium tumefaciens mediated transformation, which were analyzed by Gus biochemical assay and PCR of hygromycin phosphotransferase (hptII) and WsSQS. qRT-PCR analyses of various transformed tissues indicated 2–5 fold increase in WsSQS transcripts in both T0 and T1 generations. The tissue specific protein expression studies revealed 2–3 fold increase in WsSQS, which was further confirmed by enzyme activity. These observations were corroborated with the 1.5–2 fold increase in total withanolide content of the transformed tissues. However, in leaf tissue, the levels of Withaferin A and Withanolide A increased significantly up to 4–4.5 fold. These findings demonstrate genetic engineering of isoprenoid pathway in W. somnifera resulting in enhanced production of withanolides, and also provide insights into such metabolic pathways for their manipulation to improve the pharmacological content of different medicinally important plants.

28 citations

01 Jan 2009
TL;DR: Withania somnifera Dunal (Ashwangdha) has been demonstrated to possess adaptogenic, anti-inflammatory, antioxidant,Anti-platelet, antihypertensive, hypoglycemic and hypolipidemic effects which may contribute to its cardioprotective properties.
Abstract: 2 Abstract: Withania somnifera Dunal (Ashwangdha), a popular medicinal herb of Ayurveda is used for health, vitality, longevity and rejuvenation properties. It is a common ingredient of polyherbal or herbomineral formulations and used for preventive or therapeutic polypharmaceutical use. Present article emphasized on the studies, which provides the pharmacological basis of its use in cardiovascular diseases. It has been demonstrated to possess adaptogenic, anti-inflammatory, antioxidant, anti-platelet, antihypertensive, hypoglycemic and hypolipidemic effects which may contribute to its cardioprotective properties.

28 citations

Journal ArticleDOI
TL;DR: The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years and discusses the unexplored areas which might be taken into consideration for future research.
Abstract: Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and the secondary metabolites produced by this plant can be exploited further for the benefit of human health in a sustainable way.

28 citations

Journal ArticleDOI
21 Nov 2014-PLOS ONE
TL;DR: Testing the neuroprotective effects of Methanol: Chloroform (3:1) extract of ASH and its constituent Withanolide A (WA) against Aβ induced toxicity, HIV-1Ba-L (clade B) infection and the effects of drugs of abuse suggests that ASH could be a potential novel drug to reduce the brain amyloid burden and/or improve the HIV- 1 associated neurocognitive impairments.
Abstract: Alzheimer's disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. Withania somnifera (WS) also known as ‘ashwagandha’ (ASH) is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is paucity of data on potential neuroprotective effects of ASH against β-Amyloid (1–42) (Aβ) induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of Methanol: Chloroform (3:1) extract of ASH and its constituent Withanolide A (WA) against Aβ induced toxicity, HIV-1Ba-L (clade B) infection and the effects of drugs of abuse using a human neuronal SK-N-MC cell line. Aβ when tested individually, induced cytotoxic effects in SK-N-MC cells as shown by increased trypan blue stained cells. However, when ASH was added to Aβ treated cells the toxic effects were neutralized. This observation was supported by cellular localization of Aβ, MTT formazan exocytosis, and the levels of acetylcholinesterase activity, confirming the chemopreventive or protective effects of ASH against Aβ induced toxicity. Further, the levels of MAP2 were significantly increased in cells infected with HIV-1Ba-L (clade B) as well as in cells treated with Cocaine (COC) and Methamphetamine (METH) compared with control cells. In ASH treated cells the MAP2 levels were significantly less compared to controls. Similar results were observed in combination experiments. Also, WA, a purified constituent of ASH, showed same pattern using MTT assay as a parameter. These results suggests that neuroprotective properties of ASH observed in the present study may provide some explanation for the ethnopharmacological uses of ASH in traditional medicine for cognitive and other HIV associated neurodegenerative disorders and further ASH could be a potential novel drug to reduce the brain amyloid burden and/or improve the HIV-1 associated neurocognitive impairments

28 citations


Network Information
Related Topics (5)
Antioxidant
37.9K papers, 1.7M citations
79% related
Essential oil
32.6K papers, 625.2K citations
78% related
Gallic acid
9.6K papers, 287K citations
78% related
Quercetin
7.7K papers, 333.3K citations
78% related
Antibacterial activity
18.4K papers, 322.4K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023114
2022265
202188
2020124
201995
2018111