scispace - formally typeset
Search or ask a question
Topic

Withania somnifera

About: Withania somnifera is a research topic. Over the lifetime, 2116 publications have been published within this topic receiving 43404 citations. The topic is also known as: Ashwaganda & Indian ginseng.


Papers
More filters
Journal ArticleDOI
TL;DR: Evaluated methanol extract of W. somnifera shows inhibitory effects on sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation, but did not alter the viability of S. mutans biofilms cells.
Abstract: Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

9 citations

Journal ArticleDOI
TL;DR: This review substantiates Withania somnifera (WS) as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Abstract: Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.

9 citations

Journal ArticleDOI
TL;DR: WsDWF1 is described as a new player in withanogenesis, which can open up a fresh prospect for pathway engineering of W. somnifera.
Abstract: Present study describes isolation and molecular characterization of DWF1 gene from Withania somnifera and also elucidates its role in withanolide biosynthesis. Using the degenerate-reverse transcriptase and RACE strategy full length cDNA of DWF1 was isolated from W. somnifera and subsequently cloned in pGEX-4T-2 vector and expressed in E. coli. Effect of various abiotic and biotic chemicals such as methyl jasmonate (MeJA), salicylic acid (SA), 2,4-dichlorophenoxyacetic acid (2,4-D) and microbe-derived exogenous elicitor yeast extract (YE) was analyzed to establish any correlation between expression levels of transcript and withanolide accumulation. Effects on the transcript levels of WsDWF1 with each progressing ontogenic stages of W. somnifera was also carried out. Tissue-specific expression studies analyzing expression of WsDWF1 in various tissues such as leaf, root and stalk was also carried out. Full length cDNA of WsDWF1 contained an ORF of 1707 bp and encoded 65.8 kDa protein. Based upon elicitation studies using various abiotic and biotic chemicals such MeJA, SA, 2,4-D and YE, a positive correlation between withanolide accumulation and transcript profile of WsDWF1 was observed. Tissue-specific expression studies suggested higher expression of WsDWF1 in leaves followed by stalk and root tissues. A uniform increase in the transcript levels of WsDWF1 with each progressing developemental stage indicated increased substrate pool for phytosterol biosynthesis. Use of YE a known inhibitor of oxidosqualene cyclases (OSCs), showed correspondence with the increased transcript levels of WsDWF1 and an enhanced withanolide accumulation, possibly by re-routing of metabolite flux towards the downstream phytosterol biosynthesis. Present work describes WsDWF1 as a new player in withanogenesis, which can open up a fresh prospect for pathway engineering of W. somnifera.

9 citations

Journal ArticleDOI
TL;DR: It was observed that nitrogen metabolism-dependent molybdenum uptake influences the withanolides accumulation in the roots of W. somnifera.
Abstract: Context: The content of withanolides in the roots of Withania somnifera (L.) Dunal (Solanaceae) is important for therapeutic application. Earlier studies have shown that the deficiency of macro- and micronutrients affects the growth of W. somnifera. Therefore, we examined the effect of these deficiencies on the withanolides content of the roots.Objective: To examine the effect of molybdenum accretion in nitrogen-, phosphorus-, calcium- and potassium-deficient soils on the accumulation of withanolides in the roots of W. somnifera. Different withanolides have different therapeutic applications hence major bioactive withanolides assume importance.Materials and methods: Methanol extracts of the roots were subjected to HPTLC and individual withanolides were identified by comparing their Rf values with those of the authentic samples. Molybdenum was quantified by atomic absorption spectroscopy. Free radical scavenging activity was monitored by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay.Results: Moly...

9 citations


Network Information
Related Topics (5)
Antioxidant
37.9K papers, 1.7M citations
79% related
Essential oil
32.6K papers, 625.2K citations
78% related
Gallic acid
9.6K papers, 287K citations
78% related
Quercetin
7.7K papers, 333.3K citations
78% related
Antibacterial activity
18.4K papers, 322.4K citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023114
2022265
202188
2020124
201995
2018111