scispace - formally typeset
Search or ask a question
Topic

Wound rotor motor

About: Wound rotor motor is a research topic. Over the lifetime, 10735 publications have been published within this topic receiving 142117 citations.


Papers
More filters
Book
09 Mar 1990
TL;DR: In this paper, the authors describe the motion of a drive with Lumped Inertia and two Axes Drive in Polar Coordinates, and the integration of the simplified Equation of Motion.
Abstract: 1. Elementary Principles of Mechanics.- 1.1 Newtons Law.- 1.2 Moment of Inertia.- 1.3 Effect of Gearing.- 1.4 Power and Energy.- 1.5 Experimental Determination of Inertia.- 2. Dynamics of a Mechanical Drive.- 2.1 Equations Describing the Motion of a Drive with Lumped Inertia.- 2.2 Two Axes Drive in Polar Coordinates.- 2.3 Steady State Characteristics of Motors and Loads.- 2.4 Stable and Unstable Operating Points.- 3. Integration of the Simplified Equation of Motion.- 3.1 Solution of the Linearised Equation.- 3.1.1 Start of a Motor with Shunt-type Characteristic at No-load.- 3.1.2 Starting the Motor with a Load Torque Proportional to Speed.- 3.1.3 Loading Transient of the Motor Initially Running at No-load Speed.- 3.1.4 Starting of a DC Motor by Sequentially Short-circuiting Starting Resistors.- 3.2 Analytical Solution of Nonlinear Differential Equation.- 3.3 Numerical and Graphical Integration.- 4. Thermal Effects in Electrical Machines.- 4.1 Power Losses and Temperature Restrictions.- 4.2 Heating of a Homogeneous Body.- 4.3 Different Modes of Operation.- 4.3.1 Continuous Duty.- 4.3.2 Short Time Intermittent Duty.- 4.3.3 Periodic intermittent duty.- 5. Separately Excited DC Machine.- 5.1 Introduction.- 5.2 Mathematical Model of the DC Machine.- 5.3 Steady State Characteristics with Armature and Field Control.- 5.3.1 Armature Control.- 5.3.2 Field Control.- 5.3.3 Combined Armature and Field Control.- 5.4 Dynamic Behaviour of DC Motor with Constant Flux.- 6. DC Motor with Series Field Winding.- 6.1 Block Diagram of a Series-wound Motor.- 6.2 Steady State Characteristics.- 7. Control of a Separately Excited DC Machine.- 7.1 Introduction.- 7.2 Cascade Control of DC Motor in the Armature Control Region.- 7.3 Cascade Control of DC Motor in the Field-weakening Region.- 7.4 Supplying a DC Motor from a Rotating Generator.- 8. Static Converter as a Power Actuator for DC Drives.- 8.1 Electronic Switching Devices.- 8.2 Line-commutated Converter in Single-phase Bridge Connection.- 8.3 Line-commutated Converter in Three-phase Bridge Connection.- 8.4 Line-commutated Converters with Reduced Reactive Power.- 8.5 Control Loop Containing an Electronic Power Converter.- 9. Control of Converter-supplied DC Drives.- 9.1 DC Drive with Line-commutated Converter.- 9.2 DC Drives with Force-commutated Converters.- 10. Symmetrical Three-Phase AC Machines.- 10.1 Mathematical Model of a General AC Machine.- 10.2 Induction Motor with Sinusoidal Symmetrical Voltages in Steady State.- 10.2.1 Stator Current, Current Locus.- 10.2.2 Steady State Torque, Efficiency.- 10.2.3 Comparison with Practical Motor Designs.- 10.2.4 Starting of the Induction Motor.- 10.3 Induction Motor with Impressed Voltages of Arbitrary Wave- forms.- 10.4 Induction Motor with Unsymmetrical Line Voltages in Steady State.- 10.4.1 Symmetrical Components.- 10.4.2 Single-phase Induction Motor.- 10.4.3 Single-phase Electric Brake for AC Crane-Drives.- 10.4.4 Unsymmetrical Starting Circuit for Induction Motor.- 11. Power Supplies for Adjustable Speed AC Drives.- 11.1 Pulse width modulated (PWM) Voltage Source Transistor Converter (IGBT).- 11.2 Voltage Source PWM Thyristor Converter.- 11.3 Current Source Thyristor Converters.- 11.4 Converter Without DC Link (Cycloconverter).- 12. Control of Induction Motor Drives.- 12.1 Control of Induction Motor Based on Steady State Machine Model.- 12.2 Rotor Flux Orientated Control of Current-fed Induction Motor.- 12.2.1 Principle of Field Orientation.- 12.2.2 Acquisition of Flux Signals.- 12.2.3 Effects of Residual Lag of the Current Control Loops.- 12.2.4 Digital Signal Processing.- 12.2.5 Experimental Results.- 12.2.6 Effects of a Detuned Flux Model.- 12.3 Control of Voltage-fed Induction Motor.- 12.4 Field Orientated Control of Induction Motor with a Current Source Converter.- 12.5 Control of an Induction Motor Without a Mechanical Sensor.- 12.5.1 Machine Model in Stator Flux Coordinates.- 12.5.2 Example of an "Encoderless Control".- 12.5.3 Simulation and Experimental Results.- 12.6 Control of an Induction Motor Using a Combined Flux Model.- 13. Induction Motor Drive with Reduced Speed Range.- 13.1 Doubly-fed Induction Machine with Constant Stator Frequency and Field-orientated Rotor Current.- 13.2 Control of a Line-side Voltage Source Converter as a Reactive Power Compensator.- 13.3 Wound-Rotor Induction with Slip-Power Recovery.- 14. Variable Frequency Synchronous Motor Drives.- 14.1 Control of Synchronous Motors with PM Excitation.- 14.2 Synchronous Motor with Field- and Damper-Windings.- 14.3 Synchronous Motor with Load-commutated Inverter (LCI- Drive).- 15. Some Applications of Controlled Electrical Drives.- 15.1 Speed Controlled Drives.- 15.2 Lineax Position Control.- 15.3 Lineax Position Control with Moving Reference Point.- 15.4 Time-optimal Position Control with Fixed Reference Point.- 15.5 Time-optimal Position Control with Moving Reference Point.

2,882 citations

Journal ArticleDOI
TL;DR: In this article, a basic feedforward algorithm for executing this type of current vector torque control is discussed, including the implications of current regulator saturation at high speeds, and the key results are illustrated using a combination of simulation and prototype IPM drive measurements.
Abstract: Interior permanent-magnet (IPM) synchronous motors possess special features for adjustable-speed operation which distinguish them from other classes of ac machines. They are robust high powerdensity machines capable of operating at high motor and inverter efficiencies over wide speed ranges, including considerable ranges of constant-power operation. The magnet cost is minimized by the low magnet weight requirements of the IPM design. The impact of the buried-magnet configuration on the motor's electromagnetic characteristics is discussed. The rotor magnetic circuit saliency preferentially increases the quadrature-axis inductance and introduces a reluctance torque term into the IPM motor's torque equation. The electrical excitation requirements for the IPM synchronous motor are also discussed. The control of the sinusoidal phase currents in magnitude and phase angle with respect to the rotor orientation provides a means for achieving smooth responsive torque control. A basic feedforward algorithm for executing this type of current vector torque control is discussed, including the implications of current regulator saturation at high speeds. The key results are illustrated using a combination of simulation and prototype IPM drive measurements.

853 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: The overview in this paper uses signal flow graphs of complex space vector quantities to provide an insightful description of the systems used in sensorless control of induction motors.
Abstract: Controlled induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor the information on the rotor speed is extracted from measured stator voltages and currents at the motor terminals. Vector-controlled drives require estimating the magnitude and spatial orientation of the fundamental magnetic flux waves in the stator or in the rotor. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. Dynamic performance and steady-state speed accuracy in the low-speed range can be achieved by exploiting parasitic effects of the machine. The overview in this paper uses signal flow graphs of complex space vector quantities to provide an insightful description of the systems used in sensorless control of induction motors.

733 citations

Journal ArticleDOI
TL;DR: Signal flow graphs of complex space vector quantities are used to provide an insightful description of the systems used in sensorless control of induction motors.
Abstract: Controlled induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information on the rotor speed is extracted from measured stator currents and from voltages at motor terminals. Vector-controlled drives require estimating the magnitude and spatial orientation of the fundamental magnetic flux waves in the stator or in the rotor. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. Dynamic performance and steady-state speed accuracy around zero speed range are achieved by signal injection, exploiting the anisotropic properties of the machine. The overview in this paper uses signal flow graphs of complex space vector quantities to provide an insightful description of the systems used in sensorless control of induction motors.

673 citations

Journal ArticleDOI
TL;DR: This paper reviews and addresses the research work that has been carried out to reduce the amount of rare-earth material that is used while maintaining the high efficiency and performance that rare- earth PM machines offer.
Abstract: Hybrid and electric vehicle technology has seen rapid development in recent years. The motor and the generator are at the heart of the vehicle drive and energy system and often utilize expensive rare-earth permanent magnet (PM) material. This paper reviews and addresses the research work that has been carried out to reduce the amount of rare-earth material that is used while maintaining the high efficiency and performance that rare-earth PM machines offer. These new machines can use either less rare-earth PM material, weaker ferrite magnets, or no magnets; and they need to meet the high performance that the more usual interior PM synchronous motor with sintered neodymium-iron-boron magnets provides. These machines can take the form of PM-assisted synchronous reluctance machines, induction machines, switched reluctance machines, wound rotor synchronous machines (claw pole or biaxially excited), double-saliency machines with ac or dc stator current control, or brushless dc multiple-phase reluctance machines.

653 citations


Network Information
Related Topics (5)
Stator
112.5K papers, 814.8K citations
92% related
AC power
80.9K papers, 880.8K citations
88% related
Electric power system
133K papers, 1.7M citations
85% related
Rotor (electric)
179.9K papers, 1.2M citations
84% related
Fault (power engineering)
119.7K papers, 981.6K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202333
2022108
202152
202083
201977
201885