scispace - formally typeset

Wurtzite crystal structure

About: Wurtzite crystal structure is a(n) research topic. Over the lifetime, 18973 publication(s) have been published within this topic receiving 478336 citation(s). more

More filters

Journal ArticleDOI
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other. more

5,816 citations

Journal ArticleDOI
Abstract: The synthesis of epitaxially grown, wurtzite CdSe/CdS core/shell nanocrystals is reported Shells of up to three monolayers in thickness were grown on cores ranging in diameter from 23 to 39 A Shell growth was controllable to within a tenth of a monolayer and was consistently accompanied by a red shift of the absorption spectrum, an increase of the room temperature photoluminescence quantum yield (up to at least 50%), and an increase in the photostability Shell growth was shown to be uniform and epitaxial by the use of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and optical spectroscopy The experimental results indicate that in the excited state the hole is confined to the core and the electron is delocalized throughout the entire structure The photostability can be explained by the confinement of the hole, while the delocalization of the electron results in a degree of electronic accessibility that makes these nanocrystals more

2,509 citations

Journal ArticleDOI
Abstract: The status of research on both wurtzite and zinc‐blende GaN, AlN, and InN and their alloys is reviewed including exciting recent results. Attention is paid to the crystal growth techniques, structural, optical, and electrical properties of GaN, AlN, InN, and their alloys. The various theoretical results for each material are summarized. We also describe the performance of several device structures which have been demonstrated in these materials. Near‐term goals and critical areas in need of further research in the III–V nitride material system are identified. more

2,386 citations

Journal ArticleDOI
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15 more

2,374 citations

Journal ArticleDOI
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an... more

2,350 citations

Network Information
Related Topics (5)

83.4K papers, 1.8M citations

94% related

73.9K papers, 1.3M citations

94% related
Tetragonal crystal system

26.8K papers, 533.6K citations

94% related

43.2K papers, 981K citations

93% related
Band gap

86.8K papers, 2.2M citations

93% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Ahmad Umar

62 papers, 2.3K citations

Chennupati Jagadish

61 papers, 2.1K citations

Zainuriah Hassan

59 papers, 678 citations

Yoon-Bong Hahn

32 papers, 1.6K citations

Seoung-Hwan Park

28 papers, 737 citations