scispace - formally typeset
Search or ask a question

Showing papers on "X chromosome published in 2004"


Journal ArticleDOI
TL;DR: It is demonstrated that uH2A occurs on the inactive X chromosome in female mammals and that this correlates with recruitment of Polycomb group (PcG) proteins belonging to Polycomb repressor complex 1 (PRC1).

933 citations



Journal ArticleDOI
30 Jan 2004-Science
TL;DR: It is shown that imprinted X inactivation, in fact, occurs in all cells of early embryos and that the paternal X is then selectively reactivated in cells allocated to the ICM.
Abstract: It is generally accepted that paternally imprinted X inactivation occurs exclusively in extraembryonic lineages of mouse embryos, whereas cells of the embryo proper, derived from the inner cell mass (ICM), undergo only random X inactivation. Here we show that imprinted X inactivation, in fact, occurs in all cells of early embryos and that the paternal X is then selectively reactivated in cells allocated to the ICM. This contrasts with more differentiated cell types where X inactivation is highly stable and generally irreversible. Our observations illustrate that an important component of genome plasticity in early development is the capacity to reverse heritable gene silencing decisions.

524 citations


Journal ArticleDOI
TL;DR: This work compared the genetic maps to the genome sequence assemblies of rat, mouse, and human to estimate local recombination rates across these genomes, providing additional insight into the causes and consequences of genomic heterogeneity in recombination.
Abstract: Levels of recombination vary among species, among chromosomes within species, and among regions within chromosomes in mammals. This heterogeneity may affect levels of diversity, efficiency of selection, and genome composition, as well as have practical consequences for the genetic mapping of traits. We compared the genetic maps to the genome sequence assemblies of rat, mouse, and human to estimate local recombination rates across these genomes. Humans have greater overall levels of recombination, as well as greater variance. In rat and mouse, the size of the chromosome and proximity to telomere have less effect on local recombination rate than in human. At the chromosome level, rat and mouse X chromosomes have the lowest recombination rates, whereas human chromosome X does not show the same pattern. In all species, local recombination rate is significantly correlated with several sequence variables, including GC%, CpG density, repetitive elements, and the neutral mutation rate, with some pronounced differences between species. Recombination rate in one species is not strongly correlated with the rate in another, when comparing homologous syntenic blocks of the genome. This comparative approach provides additional insight into the causes and consequences of genomic heterogeneity in recombination.

510 citations


Journal ArticleDOI
TL;DR: It is shown that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it, which may be a universal driving force for X-chromosome demasculinization.
Abstract: Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.

308 citations


Journal ArticleDOI
TL;DR: In mice, X inactivation has recently been found to be much more dynamic than previously thought during early pre-implantation development.

303 citations


Journal ArticleDOI
TL;DR: The utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice.
Abstract: A complete understanding of the speciation process requires the identification of genomic regions and genes that confer reproductive barriers between species. Empirical and theoretical research has revealed two important patterns in the evolution of reproductive isolation in animals: isolation typically arises as a result of disrupted epistatic interactions between multiple loci and these disruptions map disproportionately to the X chromosome. These patterns suggest that a targeted examination of natural gene flow between closely related species at X-linked markers with known positions would provide insight into the genetic basis of speciation. We take advantage of the existence of genomic data and a well-documented European zone of hybridization between two species of house mice, Mus domesticus and M. musculus, to conduct such a survey. We evaluate patterns of introgression across the hybrid zone for 13 diagnostic X-linked loci with known chromosomal positions using a maximum likelihood model. Interlocus comparisons clearly identify one locus with reduced introgression across the center of the hybrid zone, pinpointing a candidate region for reproductive isolation. Results also reveal one locus with high frequencies of M. domesticus alleles in populations on the M. musculus side of the zone, suggesting the possibility that positive selection may act to drive the spread of alleles from one species on to the genomic background of the other species. Finally, cline width and cline center are strongly positively correlated across the X chromosome, indicating that gene flow of the X chromosome may be asymmetrical. This study highlights the utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice.

267 citations


Journal ArticleDOI
TL;DR: The special features of the XY body might reflect absence of homology between the sex chromosomes, rather than any form of dosage compensation, and may also serve to mark parental origin of the paternal X chromosome.

262 citations


Journal ArticleDOI
TL;DR: The potential of the human X chromosome, which rivals that of the more traditional mtDNA and Y chromosome, has only just begun to be tapped.
Abstract: Genetic variation records a large amount of information about the history of a species and about the processes that create and shape that variation. Owing to the way in which it is inherited, the X chromosome is a rich resource of easily accessible genetic data, and therefore provides a unique tool for population-genetic studies. The potential of the human X chromosome, which rivals that of the more traditional mtDNA and Y chromosome, has only just begun to be tapped.

241 citations


Journal ArticleDOI
TL;DR: Although the X-Y system evolved quite recently in Silene compared to mammals, the results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes.
Abstract: To help understand the evolution of suppressed recombination between sex chromosomes, and its consequences for evolution of the sequences of Y-linked genes, we have studied four X-Y gene pairs, including one gene not previously characterized, in plants in a group of closely related dioecious species of Silene which have an X-Y sex-determining system (S. latifolia, S. dioica, and S. diclinis). We used the X-linked copies to build a genetic map of the X chromosomes, with a marker in the pseudoautosomal region (PAR) to orient the map. The map covers a large part of the X chromosomes—at least 50 centimorgans. Except for a recent rearrangement in S. dioica, the gene order is the same in the X chromosomes of all three species. Silent site divergence between the DNA sequences of the X and Y copies of the different genes increases with the genes' distances from the PAR, suggesting progressive restriction of recombination between the X and Y chromosomes. This was confirmed by phylogenetic analyses of the four genes, which also revealed that the least-diverged X-Y pair could have ceased recombining independently in the dioecious species after their split. Analysis of amino acid replacements vs. synonymous changes showed that, with one possible exception, the Y-linked copies appear to be functional in all three species, but there are nevertheless some signs of degenerative processes affecting the genes that have been Y-linked for the longest times. Although the X-Y system evolved quite recently in Silene (less than 10 million years ago) compared to mammals (about 320 million years ago), our results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes.

233 citations


Journal ArticleDOI
TL;DR: It is concluded that mutations in EFNB1 cause CFNS, a X-linked craniofacial disorder with an unusual manifestation pattern, in which affected females show multiple skeletal malformations whereas the genetic defect causes no or only mild abnormalities in male carriers.
Abstract: Craniofrontonasal syndrome (CFNS) is an X-linked craniofacial disorder with an unusual manifestation pattern, in which affected females show multiple skeletal malformations, whereas the genetic defect causes no or only mild abnormalities in male carriers. Recently, we have mapped a gene for CFNS in the pericentromeric region of the X chromosome that contains the EFNB1 gene, which encodes the ephrin-B1 ligand for Eph receptors. Since Efnb1 mutant mice display a spectrum of malformations and an unusual inheritance reminiscent of CFNS, we analyzed the EFNB1 gene in three families with CFNS. In one family, a deletion of exons 2–5 was identified in an obligate carrier male, his mildly affected brother, and in the affected females. In the two other families, missense mutations in EFNB1 were detected that lead to amino acid exchanges P54L and T111I. Both mutations are located in multimerization and receptor-interaction motifs found within the ephrin-B1 extracellular domain. In all cases, mutations were found consistently in obligate male carriers, clinically affected males, and affected heterozygous females. We conclude that mutations in EFNB1 cause CFNS.

Journal ArticleDOI
TL;DR: The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders.

Journal ArticleDOI
TL;DR: It is found that both H3K9 dimethylation and K27 trimethylation characterize the inactive X in somatic cells and that their relative kinetics of enrichment on the X chromosome as it undergoes inactivation are similar.
Abstract: Histone H3 tail modifications are among the earliest chromatin changes in the X-chromosome inactivation process. In this study we investigated the relative profiles of two important repressive marks on the X chromosome: methylation of H3 lysine 9 (K9) and 27 (K27). We found that both H3K9 dimethylation and K27 trimethylation characterize the inactive X in somatic cells and that their relative kinetics of enrichment on the X chromosome as it undergoes inactivation are similar. However, dynamic changes of H3K9 and H3K27 methylation on the inactivating X chromosome compared to the rest of the genome are distinct, suggesting that these two modifications play complementary and perhaps nonredundant roles in the establishment and/or maintenance of X inactivation. Furthermore, we show that a hotspot of H3K9 dimethylation 5' to Xist also displays high levels of H3 tri-meK27. However, analysis of this region in G9a mutant embryonic stem cells shows that these two methyl marks are dependent on different histone methyltransferases.

Journal ArticleDOI
TL;DR: In this paper, a four generation family is described in which some men of normal intelligence have epilepsy and others have various combinations of epilepsy, learning difficulties, macrocephaly, and aggressive behaviour.
Abstract: A four generation family is described in which some men of normal intelligence have epilepsy and others have various combinations of epilepsy, learning difficulties, macrocephaly, and aggressive behaviour. As the phenotype in this family is distinct from other X linked recessive disorders linkage studies were carried out. Linkage analysis was done using X chromosome microsatellite polymorphisms to define the interval containing the causative gene. Genes from within the region were considered possible candidates and one of these, SYN1, was screened for mutations by direct DNA sequencing of amplified products. Microsatellite analysis showed that the region between MAOB (Xp11.3) and DXS1275 (Xq12) segregated with the disease. Two point linkage analysis demonstrated linkage with DXS1039, lod score 4.06 at theta = 0, and DXS991, 3.63 at theta = 0. Candidate gene analysis led to identification of a nonsense mutation in the gene encoding synapsin I that was present in all affected family members and female carriers and was not present in 287 control chromosomes. Synapsin I is a synaptic vesicle associated protein involved in the regulation of synaptogenesis and neurotransmitter release. The SYN1 nonsense mutation that was identified is the likely cause of the phenotype in this family.

Journal ArticleDOI
01 May 2004-Genetics
TL;DR: The Z-W sex chromosomes of birds are studied to investigate the “strata” hypothesis in birds and suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution.
Abstract: The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution.

Journal ArticleDOI
TL;DR: It is observed that DNA lacking a pairing partner during meiosis, the normal situation for the X chromosome in males, is targeted for methylation of histone H3 at Lys9 (H3-Lys9) and can be silenced.
Abstract: The genetic imprinting of individual loci or whole chromosomes, as in imprinted X-chromosome inactivation in mammals1,2, is established and reset during gametogenesis; defects in this process in the parent can result in disease in the offspring3. We describe a sperm-specific chromatin-based imprinting of the X chromosome in the nematode Caenorhabditis elegans that is restricted to histone H3 modifications. The epigenetic imprint is established during spermatogenesis and its stability in the offspring is affected by the presence of a pairing partner during meiosis in the parental germ line. We observed that DNA lacking a pairing partner during meiosis, the normal situation for the X chromosome in males, is targeted for methylation of histone H3 at Lys9 (H3-Lys9) and can be silenced. Targeting unpaired DNA for silencing during meiosis, a potential hallmark of genome defense, could therefore have a conserved role in imprinted X-chromosome inactivation and, ultimately, in sex chromosome evolution.

Journal ArticleDOI
TL;DR: The current status of plant sex-chromosome research is reviewed and the advantages of different dioecious models are discussed, providing strong evidence that the sex chromosomes originated from a regular pair of autosomes.

Journal ArticleDOI
TL;DR: Although both RNA helicases are structurally very similar, they have diverged functionally to fulfill different roles in the RNA metabolism of human spermatogenesis, and that deletion of the DBY gene is the most likely cause of the severe testicular pathology observed in men with AZFa deletions.
Abstract: We explored the function of the human DEAD-box Y RNA helicase DBY (DDX3Y) gene located in the (AZFa) region on the human Y chromosome (Yq11.21). Deletion of this Y interval is known to be a major cause for the occurrence of a severe testicular pathology, the Sertoli-cell-only (SCO) syndrome. DBY has a structural homologue on the short arm of the X chromosome DBX (DDX3X) (Xp11.4). We found widespread transcription of both genes in each tissue analyzed, although predominantly in testis tissue. However, translation of DBY was detected only in the male germ line, whereas DBX protein was expressed in all tissues analyzed. In testis tissue sections, DBY protein was found predominantly in spermatogonia, whereas DBX protein was expressed after meiosis in spermatids. We conclude that although both RNA helicases are structurally very similar, they have diverged functionally to fulfill different roles in the RNA metabolism of human spermatogenesis, and that deletion of the DBY gene is the most likely cause of the severe testicular pathology observed in men with AZFa deletions.

Journal ArticleDOI
TL;DR: It is shown that both the X and Y chromosomes undergo sequential changes in their histone modifications beginning at the pachytene stage of meiosis, which provides insights into epigenetic programming and chromatin dynamics in the male germ line.
Abstract: Based on the formation of the XY body at pachytene and expression studies of a few X-linked genes, the X and Y chromosomes seem to undergo transcriptional inactivation during mammalian spermatogenesis. However, the extent and the mechanism of X and Y inactivation are not known. Here, we show that both the X and Y chromosomes undergo sequential changes in their histone modifications beginning at the pachytene stage of meiosis. These changes usually are associated with transcriptional inactivation in somatic cells, and they coincide with the exclusion of the phosphorylated (active) form of RNA polymerase II from the XY body. Both sex chromosomes undergo extensive deacetylation at histones H3 and H4 and (di)methylation of lysine (K)9 on histone H3; however, there are no changes in H3–K4 methylation. These changes persist even when the XY body disappears in late pachytene, and the X and Y chromosomes segregate from one another after the first meiotic division. By the spermatid stage, histone modifications of the X and Y chromosomes revert to those of active chromatin and RNA polymerase II reengages with both chromosomes. Our observations indicate that X and Y inactivation is extensive and persists even when the X and Y chromosomes are separated in secondary spermatocytes. These findings provide insights into epigenetic programming and chromatin dynamics in the male germ line.

Journal ArticleDOI
TL;DR: Although X and Y genes probably influence brain phenotype in a sex-specific manner, much more information is needed to identify the magnitude and character of these effects.
Abstract: In mammals and birds, the sex of the gonads is determined by genes on the sex chromosomes For example, the mammalian Y-linked gene Sry causes testis differentiation The testes then secrete testosterone, which acts on the brain (often after conversion to estradiol) to cause masculine patterns of development If this were the only reason for sex differences in neural development, then XX and XY brain cells would have to be deemed otherwise equivalent This equivalence is doubtful because of recent experimental results demonstrating that some XX and XY tissues, including the brain, are sexually dimorphic even when they develop in a similar endocrine environment Although X and Y genes probably influence brain phenotype in a sex-specific manner, much more information is needed to identify the magnitude and character of these effects

Journal ArticleDOI
TL;DR: Comparative genomic hybridization was used to analyse three hES cell lines derived in the laboratory and cultured continuously for 30-42 weeks, comprising 35-39 cell passages, and an aberrant X chromosome was detected at passage 61.
Abstract: Human embryonic stem (hES) cells are important research tools in studies of the physiology of early tissue differentiation. In addition, prospects are high regarding the use of these cells for successful cell transplantation. However, one concern has been that cultivation of these cells over many passages might induce chromosomal changes. It is thus important to investigate these cell lines, and check that a normal chromosomal content is retained even during long-term in vitro culture. Comparative genomic hybridization (CGH) was used to analyse three hES cell lines derived in our laboratory and cultured continuously for 30-42 weeks, comprising 35-39 cell passages. CGH could be successfully performed in 48 out of a total of 50 isolated single cells (96%). All three lines (HS181, HS235 and HS237) were shown to have a normal chromosomal content when analysed by both single cell CGH and by karyotyping up to passages 39, 39 and 35 respectively. No aneuploidies or larger deletions or amplifications were detected, and they were female (46,XX). However, HS237 was reanalysed at passage 61, and at that point an aberrant X chromosome was detected by karyotyping. The aberration was confirmed and characterized by single cell CGH and fluorescence in situ hybridization analysis, 46,X,idic(X)(q21). Thus, chromosomal aberrations may occur over time in stem cell lines, and continuous analysis of these cells during cultivation is crucial. Single cell CGH is a method that can be used for continuous analysis of the hES cell lines during cultivation, in order to detect chromosome imbalance.

Journal ArticleDOI
TL;DR: It is found that females with classic RTT exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations, and this raises the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.
Abstract: Rett syndrome (RTT), a neurodevelopmental disorder affecting mostly females, is caused by mutations in the X-linked gene encoding methyl-CpG–binding protein 2 (MeCP2). Although the majority of girls with classic RTT have a random pattern of X-chromosome inactivation (XCI), nonbalanced patterns have been observed in patients carrying mutant MECP2 and, in some cases, account for variability of phenotypic manifestations. We have generated an RTT mouse model that recapitulates all major aspects of the human disease, but we found that females exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations. To evaluate whether XCI influences the phenotypic outcome of Mecp2 mutation in the mouse, we studied the pattern of XCI at the single-cell level in brains of heterozygous females. We found that XCI patterns were unbalanced, favoring expression of the wild-type allele, in most mutant females. It is notable that none of the animals had nonrandom XCI favoring the mutant allele. To explore why the XCI patterns favored expression of the wild-type allele, we studied primary neuronal cultures from Mecp2-mutant mice and found selective survival of neurons in which the wild-type X chromosome was active. Quantitative analysis indicated that fewer phenotypes are observed when a large percentage of neurons have the mutant X chromosome inactivated. The study of neuronal XCI patterns in a large number of female mice carrying a mutant Mecp2 allele highlights the importance of MeCP2 for neuronal viability. These findings also raise the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.

Journal ArticleDOI
01 Feb 2004-Genetics
TL;DR: It is revealed that incompatibility of interactions of X-linked gene(s) with autosomal and/or Y-linked genes causes the hybrid breakdown between the genetically distant C57BL/6J and MSM/Ms strains.
Abstract: Hybrid breakdown is a type of reproductive failure that appears after the F2 generation of crosses between different species or subspecies. It is caused by incompatibility between interacting genes. Genetic analysis of hybrid breakdown, particularly in higher animals, has been hampered by its complex nature (i.e., it involves more than two genes, and the phenotype is recessive). We studied hybrid breakdown using a new consomic strain, C57BL/6J-X(MSM), in which the X chromosome of C57BL/6J (derived mostly from Mus musculus domesticus) is substituted by the X chromosome of the MSM/Ms strain (M. m. molossinus). Males of this consomic strain are sterile, whereas F1 hybrids between C57BL/6J and MSM/Ms are completely fertile. The C57BL/6J-X(MSM) males showed reduced testis weight with variable defects in spermatogenesis and abnormal sperm head morphology. We conducted quantitative trait locus (QTL) analysis for these traits to map the X-linked genetic factors responsible for the sterility. This analysis successfully detected at least three distinct loci for the sperm head morphology and one for the testis weight. This study revealed that incompatibility of interactions of X-linked gene(s) with autosomal and/or Y-linked gene(s) causes the hybrid breakdown between the genetically distant C57BL/6J and MSM/Ms strains.

Journal ArticleDOI
TL;DR: A novel approach to manufacture a DNA microarray for CGH for the detection of aneuploidy in single cells requiring just 30 h is reported, which may be more suitable for PGD aneuPLoidy screening than metaphase CGH.
Abstract: The use of metaphase comparative genomic hybridization (CGH) to screen all human chromosomes for aneuploidy in preim-plantation embryos is hindered by the time required to perform the analysis. We report in this paper a novel approach to manufacture a DNA microarray for CGH for the detection of aneuploidy in single cells. We spotted human chromosome-specific libraries on glass slides that were depleted of repetitive sequences and tested our array CGH method in 14 experiments using either single male and/or single female lymphocytes. For the autosomes, the mean normalized ratios were all close to the expected ratio of 1.0 with overall 300/308 (97%) of the normalized ratios falling within the range 0.75 to 1.25. It was possible to deduce the correct copy number of the X chromosome in 13/14 (92.9%) separate array CGH experiments but the Y chromosome in only 4/14 (29%). We tested our microarray CGH method on a single fibroblast from each of three cell lines containing a specific chromosome aneuploidy (trisomy 13, 15 or 18) and in each case our microarray analysis was able to obtain a diagnosis based on the fact that the aneuploid chromosome gave the highest ratio (1.32, 1.27 and 1.27 respectively) with the ratios of all other chromosomes falling within the range 0.75-1.25. Requiring just 30 h, our method may be more suitable for PGD aneuploidy screening than metaphase CGH.

Journal ArticleDOI
TL;DR: It is demonstrated that Mecp2-mutant neurons affect the development of surrounding neurons in a non-cell-autonomous manner and suggest that environmental influences affect the level of MeCP2 expression in wt neurons.
Abstract: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG-binding protein 2 (MeCP2). The onset of symptoms in RTT is delayed until 6-18 months and 4-6 months in the Mecp2(-/+) mouse model, corresponding to a dynamic and gradual accumulation of MeCP2 expression in individual neurons of the postnatal brain. Because of X chromosome inactivation (XCI), cells within RTT females are mosaic for expression of the heterozygous MECP2 mutation. Using the targeted Mecp2 mouse model, we investigated the effect of Mecp2 mutation on XCI and developmental MeCP2 expression in wild-type (wt)-expressing neurons by quantitative laser scanning cytometry. Mecp2(-/+) female mice exhibited uniform regional distribution of Mecp2 mutant-expressing cells in brain, but unbalanced XCI in the population, favoring expression of the Mecp2 wt allele. Interestingly, MeCP2 expression in Mecp2 wt-expressing cells from Mecp2(-/+) mice was significantly lower than those from Mecp2(+/+) age-matched controls. The negative effect of Mecp2 mutation on wt Mecp2 expression correlated with the percentage of Mecp2 mutant-expressing cells in the cortex. Similar results were observed in two RTT females with identical MECP2 mutations but different XCI ratios. These results demonstrate that Mecp2-mutant neurons affect the development of surrounding neurons in a non-cell-autonomous manner and suggest that environmental influences affect the level of MeCP2 expression in wt neurons. These results help in explaining the role of XCI in the pathogenesis of RTT and have important implications in designing therapies for female RTT patients.

Journal ArticleDOI
TL;DR: The goal here is to integrate recent findings, highlight controversies in the field and identify areas for further study on testis-specific retrogenes, which might be associated with human male infertility.
Abstract: Retrogenes originate from their progenitor genes by retroposition. Several retrogenes reported in recent studies are autosomal, originating from X-linked progenitor genes, and have evolved a testis-specific expression pattern. During male meiosis, sex chromosomes are segregated into a so-called 'XY' body and are silenced transcriptionally. It has been widely hypothesized that the silencing of the X chromosome during male meiosis is the driving force behind the retroposition of X-linked genes to autosomes during evolution. With the advent of sequenced genomes of many species, many retrogenes can be identified and characterized. The testis-specific retrogenes might be associated with human male infertility. My goal here is to integrate recent findings, highlight controversies in the field and identify areas for further study.

Journal ArticleDOI
TL;DR: It is demonstrated that delayed upregulation of Xist does not induce X-inactivation and that a single X chromosome undergoes proper inactivation in mutant females, consistent with a crucial developmental window for the chromosomal silencing.
Abstract: Xist (X-inactive specific transcript) plays a crucial role in X-inactivation. This non-coding RNA becomes upregulated on the X chromosome that is to be inactivated upon differentiation. Previous studies have revealed that although maintenance-type DNA methylation is not essential for X-inactivation to occur, it is required for the stable repression of Xist in differentiated cells. However, it is unknown whether differential de novo methylation at the Xist promoter, which is mediated by Dnmt3a and/or Dnmt3b, is a cause or a consequence of monoallelic expression of Xist. We show that Xist expression is appropriately regulated in the absence of Dnmt3a and Dnmt3b and that a single X chromosome undergoes proper inactivation in mutant females. Our results indicate that a mechanism(s) other than DNA methylation plays a principal role in initiating X-inactivation. We also demonstrate that delayed upregulation of Xist does not induce X-inactivation, consistent with a crucial developmental window for the chromosomal silencing.

Journal ArticleDOI
TL;DR: Several evolutionary theories are synthesized that may account for this nonrandom assortment of genes on the sex chromosomes, including 1) asexual degeneration, 2) sexual antagonism, 3) constant selection, and 4) hemizygous exposure.
Abstract: It has become increasingly evident that gene content of the sex chromosomes is markedly different from that of the autosomes. Both sex chromosomes appear enriched for genes related to sexual differentiation and reproduction; but curiously, the human X chromosome also seems to bear a preponderance of genes linked to brain and muscle functions. In this review, we will synthesize several evolutionary theories that may account for this nonrandom assortment of genes on the sex chromosomes, including 1) asexual degeneration, 2) sexual antagonism, 3) constant selection, and 4) hemizygous exposure. Additionally, we will speculate on how the evolution of sex-chromosome gene content might have impacted on the phenotypic evolution of mammals and particularly humans. Our discussion will focus on the mammalian sex chromosomes, but will cross reference other species where appropriate.

Journal ArticleDOI
TL;DR: It is found that Utp14b-like retrogenes arose independently and were conserved during evolution in at least four mammalian lineages, implying a strong selective pressure, perhaps to enable ribosome assembly in male meiotic cells.
Abstract: We identified the gene carrying the juvenile spermatogonial depletion mutation (jsd), a recessive spermatogenic defect mapped to mouse chromosome 1 (refs. 1,2). We localized jsd to a 272-kb region and resequenced this area to identify the underlying mutation: a frameshift that severely truncates the predicted protein product of a 2.3-kb genomic open reading frame. This gene, Utp14b, evidently arose through reverse transcription of an mRNA from an X-linked gene and integration of the resulting cDNA into an intron of an autosomal gene, whose promoter and 5' untranslated exons are shared with Utp14b. To our knowledge, Utp14b is the first protein-coding retrogene to be linked to a recessive mammalian phenotype. The X-linked progenitor of Utp14b is the mammalian ortholog of yeast Utp14, which encodes a protein required for processing of pre-rRNA and hence for ribosome assembly. Our findings substantiate the hypothesis that mammalian spermatogenesis is supported by autosomal retrogenes that evolved from X-linked housekeeping genes to compensate for silencing of the X chromosome during male meiosis. We find that Utp14b-like retrogenes arose independently and were conserved during evolution in at least four mammalian lineages. This recurrence implies a strong selective pressure, perhaps to enable ribosome assembly in male meiotic cells.

Journal ArticleDOI
01 Nov 2004-Genetics
TL;DR: Results indicate that limiting the amount of a major axis component results in a reduced capacity to communicate the presence of a (nascent) crossover and/or to discourage others in response.
Abstract: Most sexually reproducing organisms depend on the regulated formation of crossovers, and the consequent chiasmata, to accomplish successful segregation of homologous chromosomes at the meiosis I division A robust, chromosome-wide crossover control system limits chromosome pairs to one crossover in most meioses in the nematode Caenorhabditis elegans; this system has been proposed to rely on structural integrity of meiotic chromosome axes Here, we test this hypothesis using a mutant, him-3(me80), that assembles reduced levels of meiosis-specific axis component HIM-3 along cohesin-containing chromosome axes Whereas pairing, synapsis, and crossing over are eliminated when HIM-3 is absent, the him-3(me80) mutant supports assembly of synaptonemal complex protein SYP-1 along some paired chromosomes, resulting in partial competence for chiasma formation We present both genetic and cytological evidence indicating that the him-3(me80) mutation leads to an increased incidence of meiotic products with two crossovers These results indicate that limiting the amount of a major axis component results in a reduced capacity to communicate the presence of a (nascent) crossover and/or to discourage others in response