scispace - formally typeset
Search or ask a question

Showing papers on "X chromosome published in 2011"


Journal ArticleDOI
21 Apr 2011-Nature
TL;DR: It is shown that other eutherian mammals have very different strategies for initiating XCI, and differences between mammals in their requirement for dosage compensation during early embryogenesis are highlighted.
Abstract: X-chromosome inactivation (XCI) in female mammals allows dosage compensation for X-linked gene products between the sexes The developmental regulation of this process has been extensively investigated in mice, where the X chromosome of paternal origin (Xp) is silenced during early embryogenesis owing to imprinted expression of the regulatory RNA, Xist (X-inactive specific transcript) Paternal XCI is reversed in the inner cell mass of the blastocyst and random XCI subsequently occurs in epiblast cells Here we show that other eutherian mammals have very different strategies for initiating XCI In rabbits and humans, the Xist homologue is not subject to imprinting and XCI begins later than in mice Furthermore, Xist is upregulated on both X chromosomes in a high proportion of rabbit and human embryo cells, even in the inner cell mass In rabbits, this triggers XCI on both X chromosomes in some cells In humans, chromosome-wide XCI has not initiated even by the blastocyst stage, despite the upregulation of XIST The choice of which X chromosome will finally become inactive thus occurs downstream of Xist upregulation in both rabbits and humans, unlike in mice Our study demonstrates the remarkable diversity in XCI regulation and highlights differences between mammals in their requirement for dosage compensation during early embryogenesis

403 citations


Journal ArticleDOI
TL;DR: The emerging picture is complex and suggests that chromosome-wide silencing can be partitioned into several steps, the molecular components of which are starting to be defined.
Abstract: In female mammals, one of the two X chromosomes is silenced for dosage compensation between the sexes. X-chromosome inactivation is initiated in early embryogenesis by the Xist RNA that localizes to the inactive X chromosome. During development, the inactive X chromosome is further modified, a specialized form of facultative heterochromatin is formed and gene repression becomes stable and independent of Xist in somatic cells. The recent identification of several factors involved in this process has provided insights into the mechanism of Xist localization and gene silencing. The emerging picture is complex and suggests that chromosome-wide silencing can be partitioned into several steps, the molecular components of which are starting to be defined.

348 citations


Journal ArticleDOI
TL;DR: The recent discovery of the plasticity of the inactive state during early development, or during cloning, and induced pluripotency have contributed to the X chromosome becoming a gold standard in reprogramming studies.
Abstract: X-chromosome inactivation (XCI) ensures dosage compensation in mammals and is a paradigm for allele-specific gene expression on a chromosome-wide scale. Important insights have been made into the developmental dynamics of this process. Recent studies have identified several cis- and trans-acting factors that regulate the initiation of XCI via the X-inactivation centre. Such studies have shed light on the relationship between XCI and pluripotency. They have also revealed the existence of dosage-dependent activators that trigger XCI when more than one X chromosome is present, as well as possible mechanisms underlying the monoallelic regulation of this process. The recent discovery of the plasticity of the inactive state during early development, or during cloning, and induced pluripotency have also contributed to the X chromosome becoming a gold standard in reprogramming studies.

330 citations


Journal ArticleDOI
TL;DR: It is found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin, and a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.
Abstract: Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.

298 citations


Journal ArticleDOI
TL;DR: Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes and suggests that they may have female-specific roles and be responsible for some of the phenotypes observed in X aneuploidy.
Abstract: To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.

297 citations


Journal ArticleDOI
TL;DR: Test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases, and identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations.
Abstract: Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n=142; 122 males and 20 females) or SCZ (n=143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).

276 citations


Journal ArticleDOI
TL;DR: These analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.
Abstract: Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.

260 citations


Journal ArticleDOI
TL;DR: It is hypothesize that X chromosome‐associated mechanisms, which affect X‐linked genes and are behind the immunological advantage of females, may also affectX‐linked microRNAs, which have important functions in immunity and cancer.
Abstract: In this paper, we hypothesize that X chromosome-associated mechanisms, which affect X-linked genes and are behind the immunological advantage of females, may also affect X-linked microRNAs. The human X chromosome contains 10% of all microRNAs detected so far in the human genome. Although the role of most of them has not yet been described, several X chromosome-located microRNAs have important functions in immunity and cancer. We therefore provide a detailed map of all described microRNAs located on human and mouse X chromosomes, and highlight the ones involved in immune functions and oncogenesis. The unique mode of inheritance of the X chromosome is ultimately the cause of the immune disadvantage of males and the enhanced survival of females following immunological challenges. How these aspects influence X-linked microRNAs will be a challenge for researchers in the coming years, not only from an evolutionary point of view, but also from the perspective of disease etiology.

228 citations


Journal ArticleDOI
TL;DR: Evidence is provided of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans, and the pathogenic mutation hNaa10p causes this disease.
Abstract: We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering disease-causing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans.

226 citations


Journal ArticleDOI
18 Feb 2011-Science
TL;DR: It is found that mouse PAR DNA occupies unusually long chromosome axes, potentially as shorter chromatin loops, predicted to promote double-strand break (DSB) formation and uncover specific mechanisms that surmount the unique challenges of X-Y recombination.
Abstract: Meiosis requires that each chromosome find its homologous partner and undergo at least one crossover. X-Y chromosome segregation hinges on efficient crossing-over in a very small region of homology, the pseudoautosomal region (PAR). We find that mouse PAR DNA occupies unusually long chromosome axes, potentially as shorter chromatin loops, predicted to promote double-strand break (DSB) formation. Most PARs show delayed appearance of RAD51/DMC1 foci, which mark DSB ends, and all PARs undergo delayed DSB-mediated homologous pairing. Analysis of Spo11β isoform-specific transgenic mice revealed that late RAD51/DMC1 foci in the PAR are genetically distinct from both early PAR foci and global foci and that late PAR foci promote efficient X-Y pairing, recombination, and male fertility. Our findings uncover specific mechanisms that surmount the unique challenges of X-Y recombination.

224 citations


Journal ArticleDOI
TL;DR: Mmany genes from the X chromosome are expressed at the same level in female and male embryos during early Drosophila development, prior to the establishment of MSL-mediated dosage compensation, suggesting the existence of a novel mechanism.
Abstract: When Drosophila melanogaster embryos initiate zygotic transcription around mitotic cycle 10, the dose-sensitive expression of specialized genes on the X chromosome triggers a sex-determination cascade that, among other things, compensates for differences in sex chromosome dose by hypertranscribing the single X chromosome in males. However, there is an approximately 1 hour delay between the onset of zygotic transcription and the establishment of canonical dosage compensation near the end of mitotic cycle 14. During this time, zygotic transcription drives segmentation, cellularization, and other important developmental events. Since many of the genes involved in these processes are on the X chromosome, we wondered whether they are transcribed at higher levels in females and whether this might lead to sex-specific early embryonic patterning. To investigate this possibility, we developed methods to precisely stage, sex, and characterize the transcriptomes of individual embryos. We measured genome-wide mRNA abundance in male and female embryos at eight timepoints, spanning mitotic cycle 10 through late cycle 14, using polymorphisms between parental lines to distinguish maternal and zygotic transcription. We found limited sex-specific zygotic transcription, with a weak tendency for genes on the X to be expressed at higher levels in females. However, transcripts derived from the single X chromosome in males were more abundant that those derived from either X chromosome in females, demonstrating that there is widespread dosage compensation prior to the activation of the canonical MSL-mediated dosage compensation system. Crucially, this new system of early zygotic dosage compensation results in nearly identical transcript levels for key X-linked developmental regulators, including giant (gt), brinker (brk), buttonhead (btd), and short gastrulation (sog), in male and female embryos.

Journal ArticleDOI
TL;DR: In this work, a recently developed reprogramming approach was applied to generate a novel in vitro human RTT model and mutant monoallelic or biallelelic RTT-iPSCs displayed a defect in neuronal maturation consistent with RTT phenotypes.
Abstract: Rett syndrome (RTT) is one of the most prevalent female neurodevelopmental disorders that cause severe mental retardation. Mutations in methyl CpG binding protein 2 (MeCP2) are mainly responsible for RTT. Patients with classical RTT exhibit normal development until age 6–18 mo, at which point they become symptomatic and display loss of language and motor skills, purposeful hand movements, and normal head growth. Murine genetic models and postmortem human brains have been used to study the disease and enable the molecular dissection of RTT. In this work, we applied a recently developed reprogramming approach to generate a novel in vitro human RTT model. Induced pluripotent stem cells (iPSCs) were derived from RTT fibroblasts by overexpressing the reprogramming factors OCT4, SOX2, KLF4, and MYC. Intriguingly, whereas some iPSCs maintained X chromosome inactivation, in others the X chromosome was reactivated. Thus, iPSCs were isolated that retained a single active X chromosome expressing either mutant or WT MeCP2, as well as iPSCs with reactivated X chromosomes expressing both mutant and WT MeCP2. When these cells underwent neuronal differentiation, the mutant monoallelic or biallelelic RTT-iPSCs displayed a defect in neuronal maturation consistent with RTT phenotypes. Our in vitro model of RTT is an important tool allowing the further investigation of the pathophysiology of RTT and the development of the curative therapeutics.

Journal ArticleDOI
03 Mar 2011-Nature
TL;DR: Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes in Drosophila males.
Abstract: Different organisms use a variety of mechanisms to compensate for X chromosome dosage imbalance between the sexes. In Drosophila, the MSL (Male-specific lethal) complex increases transcription on the single X chromosome of males and is thought to regulate transcription elongation, although mechanistic details have been unclear. A global run-on sequencing technique has now been used to reveal that the MSL complex seems to enhance transcription by facilitating the progression of RNA polymerase II across the bodies of active X-linked genes. In this way, MSL can impose dosage compensation on diverse genes with a wide range of transcription levels along the X chromosome. Different organisms use a variety of mechanisms to compensate for X chromosome dosage imbalance between the sexes. In Drosophila, the MSL complex increases transcription on the single X chromosome of males and is thought to regulate transcription elongation, although mechanistic details have been unclear. Here, a global run-on sequencing technique is used to reveal that the MSL complex seems to enhance transcription by facilitating the progression of RNA polymerase II across the bodies of active X linked genes. In this way, MSL can impose dosage compensation on diverse genes with a wide range of transcription levels along the X chromosome. The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes1. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed2 that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3′ ends3,4,5,6,7. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq)8 to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

Journal ArticleDOI
29 Apr 2011-Cell
TL;DR: The findings reveal the spatiotemporal choreography of the X chromosomes during early differentiation and indicate a direct role for pairing in facilitating symmetry-breaking and monoallelic regulation of Xist during random X inactivation.

Journal ArticleDOI
TL;DR: Current knowledge about Xist regulation, structure, function and conservation are reviewed and speculate on possible mechanisms by which its action is restricted in cis.
Abstract: X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI.

Journal ArticleDOI
TL;DR: Suppression of X-linked transgene reporters versus normal expression of endogenous X- linked genes suggest a novel form of X chromosome-specific regulation in Drosophila testes, instead of sex chromosome dosage compensation or meiotic inactivation.
Abstract: The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation—the equalization of X chromosome gene expression in males and females— and meiotic sex chromosome inactivation (MSCI)—the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

Journal ArticleDOI
TL;DR: It is not yet known whether X chromosome duplication, XIST dysregulation, and over-expression of X-linked genes represent important factors in tumorgenesis or are simply a consequence of overall epigenetic instability in these cancers.
Abstract: Background X inactive-specific transcript (XIST) RNA is involved in X chromosome silencing in female cells and allows X chromosome equilibration with males. X inactive-specific transcript expression has been found to be dysregulated in a variety of human cancers when compared to normal cells; meanwhile, the inactivated X chromosome has been noted to be conspicuously absent in human cancer specimens, whereas X chromosome duplications are widely noted. The specific pathways whereby changes in X chromosome status and XIST expression occur in cancer remain incompletely described. Nevertheless, a role for XIST in BRCA1-mediated epigenetic activity has been proposed.

Journal ArticleDOI
07 Mar 2011-PLOS ONE
TL;DR: These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases.
Abstract: Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases.

Journal ArticleDOI
TL;DR: Functional analysis using RNAi knockdown demonstrates that Pcl2-PRC2 facilitates both PRC2 recruitment to the inactive X chromosome in differentiating XX ES cells and PRC 2 recruitment to target genes in undifferentiated ES cells, suggesting that PCl2 might function through the recognition of a specific chromatin configuration.
Abstract: Polycomb group (PcG) proteins play an important role in the control of developmental gene expression in higher organisms. In mammalian systems, PcG proteins participate in the control of pluripotency, cell fate, cell cycle regulation, X chromosome inactivation and parental imprinting. In this study we have analysed the function of the mouse PcG protein polycomblike 2 (Pcl2), one of three homologues of the Drosophila Polycomblike (Pcl) protein. We show that Pcl2 is expressed at high levels during early embryogenesis and in embryonic stem (ES) cells. At the biochemical level, Pcl2 interacts with core components of the histone H3K27 methyltransferase complex Polycomb repressive complex 2 (PRC2), to form a distinct substoichiometric biochemical complex, Pcl2-PRC2. Functional analysis using RNAi knockdown demonstrates that Pcl2-PRC2 facilitates both PRC2 recruitment to the inactive X chromosome in differentiating XX ES cells and PRC2 recruitment to target genes in undifferentiated ES cells. The role of Pcl2 in PRC2 targeting in ES cells is critically dependent on a conserved PHD finger domain, suggesting that Pcl2 might function through the recognition of a specific chromatin configuration.

Journal ArticleDOI
TL;DR: Using balanced populations of female Rett patient and control fibroblasts, it is confirmed that all cells in iPSC colonies contain an inactive X, and additionally found that all colonies made from the same donor fibro Blasts contain the same inactive X chromosome.


Journal ArticleDOI
TL;DR: The focus of this review was to abstract the different phenotypes, which come about by the various karyotypes and to compare them to those with a ‘normal’ KS karyotype.
Abstract: Klinefelter syndrome (KS) describes the phenotype of the most common sex chromosome abnormality in humans and occurs in one of every 600 newborn males. The typical symptoms are a tall stature, narrow shoulders, broad hips, sparse body hair, gynecomastia, small testes, absent spermatogenesis, normal to moderately reduced Leydig cell function, increased secretion of follicle-stimulating hormone, androgen deficiency, and normal to slightly decreased verbal intelligence. Apart from that, amongst others, osteoporosis, varicose veins, thromboembolic disease, or diabetes mellitus are observed. Some of the typical features can be very weakly pronounced so that the affected men often receive the diagnosis only at the adulthood by their infertility. With a frequency of 4%, KS is described to be the most common genetic reason for male infertility. The most widespread karyotype in affected patients is 47,XXY. Apart from that, various other karyotypes have been described, including 46,XX in males, 47,XXY in females, 47,XX,der(Y), 47,X,der(X),Y, or other numeric sex chromosome abnormalities (48,XXXY, 48,XXYY, and 49,XXXXY). The focus of this review was to abstract the different phenotypes, which come about by the various karyotypes and to compare them to those with a 'normal' KS karyotype. For that the patients have been divided into 6 different groups: Klinefelter patients with an additional isochromosome Xq, with additional rearrangements on 1 of the 2 X chromosomes or accordingly on the Y chromosome, as well as XX males and true hermaphrodites, 47,XXY females and Klinefelter patients with other numeric sex chromosome abnormalities. In the latter, an almost linear increase in height and developmental delay was observed. Men with an additional isochromosome Xq show infertility and other minor features of 'normal' KS but not an increased height. Aside from the infertility, in male patients with other der(X) as well as der(Y) rearrangements and in XXY women no specific phenotype is recognizable amongst others due to the small number of cases. The phenotype of XX males depends on the presence of SRY (sex-determining region Y) and the level of X inactivation at which SRY-negative patients are generally rarely observed.

Journal ArticleDOI
TL;DR: The results suggest that epigenetic factors influencing PBC onset are more complex than methylation differences at X-linked promoters and variably 3 inactivated X- linked genes may be characterized by partial promoter methylation and biallelic transcription.
Abstract: Primary biliary cirrhosis (PBC) is an autoimmune chronic cholestatic liver disease with a strong genetic susceptibility due to the high concordance in monozygotic (MZ) twins and a striking female predominance. Women with PBC manifest an enhanced X monosomy rate in peripheral lymphocytes and we thus hypothesized an X chromosome epigenetic component to explain PBC female prevalence. While most genes on the female inactive X chromosome are silenced by promoter methylation following X chromosome inactivation (XCI), approximately 10% of X- linked genes exhibit variable escape from XCI in healthy females. This study was designed to test the hypothesis that susceptibility to PBC is modified by one or more X-linked gene with variable XCI status. Peripheral blood mRNA and DNA samples were obtained from a unique cohort of MZ twin sets discordant and concordant for PBC. Transcript levels of the 125 variable XCI status genes was determined by quantitative RT-PCR analysis and two genes (CLIC2 and PIN4) were identified as consistently downregulated in the affected twin of discordant pairs. Both CLIC2 and PIN4 demonstrated partial and variable methylation of CpG sites within 300 bp of the transcription start site that did not predict the XCI status. Promoter methylation of CLIC2 manifested no significant difference between samples and no significant correlation with transcript levels. PIN4 methylation showed a positive trend with transcription in all samples but no differential methylation was observed between discordant twins. A genetic polymorphism affecting the number of CpG sites in the PIN4 promoter did not impact methylation or transcript levels in a heterozygous twin pair and showed a similar frequency in independent series of unrelated PBC cases and controls. Our results suggest that epigenetic factors influencing PBC onset are more complex than methylation differences at X-linked promoters and variably 3 inactivated X-linked genes may be characterized by partial promoter methylation and biallelic transcription.

Journal ArticleDOI
TL;DR: The current understanding of the molecular mechanism of chromosome silencing in X-chromosome inactivation is discussed and topics where new findings are challenging the prevailing view are focused on.
Abstract: Fifty years ago, Mary Lyon hypothesised that one of the two X chromosomes in female mammalian cells is inactivated at random during early embryogenesis and that the inactive X is then stably maintained through all subsequent cell divisions. Although Lyon's hypothesis is now widely regarded as fact, we should not forget that her conceptual leap met with considerable resistance from the scientific establishment at the time - a common response to new ideas. Taking this point as a theme, I discuss our current understanding of the molecular mechanism of chromosome silencing in X-chromosome inactivation and focus on topics where new findings are challenging the prevailing view.

Journal ArticleDOI
TL;DR: The data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila, and paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue- biased genes on this chromosome.
Abstract: Background: Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results: Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencingassociated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions: Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissuebiased genes to the autosomes.

Journal ArticleDOI
TL;DR: A model of the dynamics of XCI in pluripotent stem cells is proposed and it is shown that in some hiPSC lines, the X chromosome was activated on reprogramming.

Journal ArticleDOI
TL;DR: How the expression of sex-linked genes varies during germ cell development is described; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage.
Abstract: The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities.

Journal ArticleDOI
25 Apr 2011-PLOS ONE
TL;DR: It is proposed that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor, as does the evolution of an ancient mammal XCI system.
Abstract: X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI.

Journal ArticleDOI
25 Jul 2011-PLOS ONE
TL;DR: It is demonstrated that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species, and the functions of MSY genes are predominantly related to testis and spermatogenesis.
Abstract: Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY) contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse – an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages.

Journal ArticleDOI
TL;DR: It is demonstrated that many human genes escape X inactivation, implicating cis-regulatory elements in the spread of silencing, and the potential nature of these elements is discussed.
Abstract: X-chromosome inactivation is an epigenetic process whereby one X chromosome is silenced in mammalian female cells. Since it was first proposed by Lyon in 1961, mouse models have been valuable tools to uncover the molecular mechanisms underlying X inactivation. However, there are also inherent differences between mouse and human X inactivation, ranging from sequence content of the X inactivation center to the phenotypic outcomes of X-chromosome abnormalities. X-linked gene dosage in males, females, and individuals with X aneuploidies and X/autosome translocations has demonstrated that many human genes escape X inactivation, implicating cis-regulatory elements in the spread of silencing. We discuss the potential nature of these elements and also review the elements in the X inactivation center involved in the early events in X-chromosome inactivation.