scispace - formally typeset
Search or ask a question

Showing papers on "X chromosome published in 2016"


01 Jan 2016
TL;DR: A number of individuals with aberrant Y chromosomes have been tested for the presence of Y-chromo-some-specific reiterated DNA as discussed by the authors, which represents at least 10% of Y chromosome DNA.
Abstract: A number of individuals with aberrant Y chromosomes have been tested for the presence of Y-chromo- some-specific reiterated DNA. These studies locate Y-chromo- some-specific reiterated sequences on the long arm of the Y chromosome. Correlation with phenotype and other known Y chromosome markers establish that the Y-chromosome-specific reiterated DNA discussed here has no evident role in male de- termination. Among all the examples of genetic regulation in mammals, the essential role of the Y chromosome in primary sex determina- tion is possibly the best known but the least well understood (1, 2). Until recently, there existed no genetic markers for the Y chromosome and thus no way to correlate chromosome struc- ture with male function. This situation is now changing with the discovery of two distinctive cytological characteristics on the human Y chromosome (3, 4) and the recognition that a locus for a male histocompatibility antigen is Y-linked (5, 6). We have recently identified reiterated DNA sequences specific for the human Y chromosome (7). These sequences represent at least 10% of Y chromosome DNA. They are used here for the initial stages of a correlative structure-function study of the human Y chromosome. We show that this partic- ular group of human Y-chromosome-specific reiterated DNA is probably limited to the long arm of that chromosome. While we establish that these sequences play no evident role in dic- tating maleness, our approach--when adapted to other Y chromosome sequences-may lead not only to a further un- derstanding of the molecular origins of sexual differences, but also to a test of the putative regulatory function (8, 9) of re- iterated DNA.

1,193 citations


Journal ArticleDOI
05 May 2016-Cell
TL;DR: A comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos, shows that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation.

827 citations


Journal ArticleDOI
18 Jul 2016-Nature
TL;DR: A crucial role is demonstrated for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC–seq) and RNA sequencing, and deletion of the boundary disrupts mega-domain formation.
Abstract: X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.

355 citations


Journal ArticleDOI
TL;DR: 3D mapping, microscopy, and genome editing are combined to study the structure of the inactive X chromosome, focusing on the role of DXZ4, and it is found that superloops and superdomains are conserved across humans, macaque, and mouse.
Abstract: During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the “Barr body.” Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called “superdomains,” such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called “superloops.” DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4. We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

241 citations


Journal ArticleDOI
28 Oct 2016-Science
TL;DR: It is shown that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to thenuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X.
Abstract: The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.

222 citations


Journal ArticleDOI
TL;DR: The inactive X is predisposed to become partially reactivated in mammalian female lymphocytes, resulting in the overexpression of immunity-related genes in females, providing the first mechanistic evidence to the authors' knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity.
Abstract: Females have a greater immunological advantage than men, yet they are more prone to autoimmune disorders. The basis for this sex bias lies in the X chromosome, which contains many immunity-related genes. Female mammals use X chromosome inactivation (XCI) to generate a transcriptionally silent inactive X chromosome (Xi) enriched with heterochromatic modifications and XIST/Xist RNA, which equalizes gene expression between the sexes. Here, we examine the maintenance of XCI in lymphocytes from females in mice and humans. Strikingly, we find that mature naive T and B cells have dispersed patterns of XIST/Xist RNA, and they lack the typical heterochromatic modifications of the Xi. In vitro activation of lymphocytes triggers the return of XIST/Xist RNA transcripts and some chromatin marks (H3K27me3, ubiquitin-H2A) to the Xi. Single-cell RNA FISH analysis of female T cells revealed that the X-linked immunity genes CD40LG and CXCR3 are biallelically expressed in some cells. Using knockout and knockdown approaches, we find that Xist RNA-binding proteins, YY1 and hnRNPU, are critical for recruitment of XIST/Xist RNA back to the Xi. Furthermore, we examined B cells from patients with systemic lupus erythematosus, an autoimmune disorder with a strong female bias, and observed different XIST RNA localization patterns, evidence of biallelic expression of immunity-related genes, and increased transcription of these genes. We propose that the Xi in female lymphocytes is predisposed to become partially reactivated and to overexpress immunity-related genes, providing the first mechanistic evidence to our knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity.

204 citations


Posted ContentDOI
19 Sep 2016-bioRxiv
TL;DR: It is demonstrated that escape from XCI results in sex biases in gene expression, thus establishing incomplete XCI as a likely mechanism introducing phenotypic diversity6,7 and this updated catalogue of XCI across human tissues informs the understanding of the extent and impact of the incompleteness.
Abstract: X chromosome inactivation (XCI) silences the transcription from one of the two X chromosomes in mammalian female cells to balance expression dosage between XX females and XY males. XCI is, however, characteristically incomplete in humans: up to one third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of "escape" from inactivation varying between genes and individuals 1,2 (Fig. 1). However, the extent to which XCI is shared between cells and tissues remains poorly characterized 3,4 , as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression 5 and phenotypic traits 6 . Here we report a systematic survey of XCI using a combination of over 5,500 transcriptomes from 449 individuals spanning 29 tissues, and 940 single-cell transcriptomes, integrated with genomic sequence data (Fig. 1). By combining information across these data types we show that XCI at the 683 X-chromosomal genes assessed is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven new escape genes supported by multiple lines of evidence, and demonstrate that escape from XCI results in sex biases in gene expression, thus establishing incomplete XCI as a likely mechanism introducing phenotypic diversity 6,7 . Overall, this updated catalogue of XCI across human tissues informs our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

204 citations


Journal ArticleDOI
TL;DR: Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI).

135 citations


Journal ArticleDOI
TL;DR: This review will consider the evidence for dosage compensation and the molecular mechanisms implicated, and several modes of dosage compensation have evolved.

98 citations


Journal ArticleDOI
TL;DR: The effects of X chromosomes number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.
Abstract: Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.

96 citations


Journal ArticleDOI
TL;DR: It is shown that the Anopheles gambiae Y chromosome contains a very small repertoire of genes, with massively amplified tandem arrays of a small number of satellites and transposable elements constituting the vast majority of the sequence.
Abstract: Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.

Journal ArticleDOI
Nina Xie1, He Gong1, Joshua A. Suhl1, Pankaj Chopra1, Tao Wang1, Stephen T. Warren1 
21 Oct 2016-PLOS ONE
TL;DR: The excision of the expanded CGG-repeat from the fragile X chromosome can result in FMR1 reactivation and a decline in DNA methylation at the FMR 1 locus is demonstrated.
Abstract: Fragile X syndrome (FXS) is a common cause of intellectual disability that is most often due to a CGG-repeat expansion mutation in the FMR1 gene that triggers epigenetic gene silencing. Epigenetic modifying drugs can only transiently and modestly induce FMR1 reactivation in the presence of the elongated CGG repeat. As a proof-of-principle, we excised the expanded CGG-repeat in both somatic cell hybrids containing the human fragile X chromosome and human FXS iPS cells using the CRISPR/Cas9 genome editing. We observed transcriptional reactivation in approximately 67% of the CRISPR cut hybrid colonies and in 20% of isolated human FXS iPSC colonies. The reactivated cells produced FMRP and exhibited a decline in DNA methylation at the FMR1 locus. These data demonstrate the excision of the expanded CGG-repeat from the fragile X chromosome can result in FMR1 reactivation.

Journal ArticleDOI
TL;DR: The research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells are reviewed.
Abstract: In animals with heteromorphic sex chromosomes, all sex differences originate from the sex chromosomes, which are the only factors that are consistently different in male and female zygotes. In mammals, the imbalance in Y gene expression, specifically the presence vs. absence of Sry, initiates the differentiation of testes in males, setting up lifelong sex differences in the level of gonadal hormones, which in turn cause many sex differences in the phenotype of non-gonadal tissues. The inherent imbalance in the expression of X and Y genes, or in the epigenetic impact of X and Y chromosomes, also has the potential to contribute directly to the sexual differentiation of non-gonadal cells. Here, we review the research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells. Some mouse models are useful for separating the effects of sex chromosomes from those of gonadal hormones. Once direct “sex chromosome effects” are detected in these models, further studies are required to narrow down the list of candidate X and/or Y genes and then to identify the sexually differentiating genes themselves. Logical approaches to the search for these genes are reviewed here.

Journal ArticleDOI
TL;DR: By analyzing whole blood transcriptomes of 922 individuals, this study conducts the first large-scale, genome-wide analysis of the impact of both sex and genetic variation on patterns of gene expression, including comparison between the X Chromosome and autosomes.
Abstract: The X Chromosome, with its unique mode of inheritance, contributes to differences between the sexes at a molecular level, including sex-specific gene expression and sex-specific impact of genetic variation. Improving our understanding of these differences offers to elucidate the molecular mechanisms underlying sex-specific traits and diseases. However, to date, most studies have either ignored the X Chromosome or had insufficient power to test for the sex-specific impact of genetic variation. By analyzing whole blood transcriptomes of 922 individuals, we have conducted the first large-scale, genome-wide analysis of the impact of both sex and genetic variation on patterns of gene expression, including comparison between the X Chromosome and autosomes. We identified a depletion of expression quantitative trait loci (eQTL) on the X Chromosome, especially among genes under high selective constraint. In contrast, we discovered an enrichment of sex-specific regulatory variants on the X Chromosome. To resolve the molecular mechanisms underlying such effects, we generated chromatin accessibility data through ATAC-sequencing to connect sex-specific chromatin accessibility to sex-specific patterns of expression and regulatory variation. As sex-specific regulatory variants discovered in our study can inform sex differences in heritable disease prevalence, we integrated our data with genome-wide association study data for multiple immune traits identifying several traits with significant sex biases in genetic susceptibilities. Together, our study provides genome-wide insight into how genetic variation, the X Chromosome, and sex shape human gene regulation and disease.

Journal ArticleDOI
TL;DR: The sex determination system in the sympatrically distributed sister species Sebastes chrysomelas and Sebastes carnatus is characterized, providing evidence of an XY sexdetermination system in both species.
Abstract: Fish have evolved a variety of sex-determining (SD) systems including male heterogamy (XY), female heterogamy (ZW) and environmental SD. Little is known about SD mechanisms of Sebastes rockfishes, a highly speciose genus of importance to evolutionary and conservation biology. Here, we characterize the sex determination system in the sympatrically distributed sister species Sebastes chrysomelas and Sebastes carnatus. To identify sex-specific genotypic markers, double digest restriction site - associated DNA sequencing (ddRAD-seq) of genomic DNA from 40 sexed individuals of both species was performed. Loci were filtered for presence in all of the individuals of one sex, absence in the other sex and no heterozygosity. Of the 74 965 loci present in all males, 33 male-specific loci met the criteria in at least one species and 17 in both. Conversely, no female-specific loci were detected, together providing evidence of an XY sex determination system in both species. When aligned to a draft reference genome from Sebastes aleutianus, 26 sex-specific loci were interspersed among 1168 loci that were identical between sexes. The nascent Y chromosome averaged 5% divergence from the X chromosome and mapped to reference Sebastes genome scaffolds totalling 6.9Mbp in length. These scaffolds aligned to a single chromosome in three model fish genomes. Read coverage differences were also detected between sex-specific and autosomal loci. A PCR-RFLP assay validated the bioinformatic results and correctly identified sex of five additional individuals of known sex. A sex-determining gene in other teleosts gonadal soma-derived factor (gsdf) was present in the model fish chromosomes that spanned our sex-specific markers.

Journal ArticleDOI
Mitchell J. Machiela1, Weiyin Zhou1, Eric Karlins1, Joshua N. Sampson1  +177 moreInstitutions (57)
TL;DR: In this article, the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) was analyzed and detected 124 mosaic X events > 2 1/mb in 97 (0.25%) women.
Abstract: To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.

Journal ArticleDOI
01 Oct 2016-Genetics
TL;DR: Drosophila has been a model for the study of this dosage compensation and has brought key strengths, including classical genetics, the exceptional cytology of polytene chromosomes, and more recently, comprehensive genomics, providing valuable insights into mechanisms for the establishment and maintenance of chromatin domains, and for the coordinate regulation of transcription.
Abstract: The sex chromosomes have special significance in the history of genetics. The chromosomal basis of inheritance was firmly established when Calvin Bridges demonstrated that exceptions to Mendel's laws of segregation were accompanied at the cytological level by exceptional sex chromosome segregation. The morphological differences between X and Y exploited in Bridges' experiments arose as a consequence of the evolution of the sex chromosomes. Originally a homologous chromosome pair, the degeneration of the Y chromosome has been accompanied by a requirement for increased expression of the single X chromosome in males. Drosophila has been a model for the study of this dosage compensation and has brought key strengths, including classical genetics, the exceptional cytology of polytene chromosomes, and more recently, comprehensive genomics. The impact of these studies goes beyond sex chromosome regulation, providing valuable insights into mechanisms for the establishment and maintenance of chromatin domains, and for the coordinate regulation of transcription.

Journal ArticleDOI
TL;DR: This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X/Y Chromosome evolution.
Abstract: We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.

Journal ArticleDOI
TL;DR: Exome sequencing of 19 females with extreme skewing revealed causal variants in six females in the XLID genes DDX3X, NHS, WDR45, MECP2, and SMC1A, presumably cause both XLID and skewing of X‐inactivation in three of these patients.
Abstract: Intellectual disability (ID) is a heterogeneous disorder with an unknown molecular etiology in many cases. Previously, X-linked ID (XLID) studies focused on males because of the hemizygous state of their X chromosome. Carrier females are generally unaffected because of the presence of a second normal allele, or inactivation of the mutant X chromosome in most of their cells (skewing). However, in female ID patients, we hypothesized that the presence of skewing of X-inactivation would be an indicator for an X chromosomal ID cause. We analyzed the X-inactivation patterns of 288 females with ID, and found that 22 (7.6%) had extreme skewing (>90%), which is significantly higher than observed in the general population (3.6%; P = 0.029). Whole-exome sequencing of 19 females with extreme skewing revealed causal variants in six females in the XLID genes DDX3X, NHS, WDR45, MECP2, and SMC1A. Interestingly, variants in genes escaping X-inactivation presumably cause both XLID and skewing of X-inactivation in three of these patients. Moreover, variants likely accounting for skewing only were detected in MED12, HDAC8, and TAF9B. All tested candidate causative variants were de novo events. Hence, extreme skewing is a good indicator for the presence of X-linked variants in female patients.

Journal ArticleDOI
TL;DR: The hypothesis that X chromosome plays an important role in the etiology of solid tumors is supported, and the underlying mechanisms for the increased incidence of non‐Hodgkin lymphoma and leukemia in persons with Klinefelter syndrome need to be investigated further.
Abstract: The risk of solid and hematological malignancy in patients with Turner syndrome, characterized by X chromosome monosomy in women, and Klinefelter syndrome, characterized with two and more X chromosomes in men, is not well established, but such evidence may have etiological implications on cancer development. We identified a total of 1,409 women with Turner syndrome and 1,085 men with Klinefelter syndrome from the Swedish Hospital Discharge and Outpatient Register. These individuals were further linked to the Swedish Cancer Register to examine the standardized incidence ratios (SIRs) of cancer using the general population without Turner and Klinefelter syndromes as reference. The overall risk of cancer was 1.34 for women with Turner syndrome; it was increased only for solid tumors. For a specific type of tumor, the risk of melanoma and central nervous system tumor was significantly increased. For persons with Klinefelter syndrome, the risk of solid tumors was decreased (SIR = 0.66), whereas the risk of hematological malignancy was increased (SIR = 2.72). Non-Hodgkin lymphoma and leukemia showed an increased SIR of 3.02 and 3.62, respectively. Our study supported the hypothesis that X chromosome plays an important role in the etiology of solid tumors. The underlying mechanisms for the increased incidence of non-Hodgkin lymphoma and leukemia in persons with Klinefelter syndrome need to be investigated further.

Journal ArticleDOI
08 Sep 2016-Nature
TL;DR: The data provide the first documented molecular mechanism through which the dosage compensation machinery distinguishes the X chromosome from an autosome and highlight fundamental principles in the recognition of complex DNA elements by protein that will have a strong impact on many aspects of chromosome biology.
Abstract: Recognition of the X chromosome by the dosage compensation complex in Drosophila relies on the sequence and shape of PionX sites. In male Drosophila, the male-specific lethal dosage compensation complex (MSL-DCC) discriminates the X chromosome from autosomes and doubles the transcription output of the X chromosome selectively. Some sequence elements are known to be involved in targeting the DCC to the X chromosome, but it has not been clear how X-chromosomal sequence elements are selected from the thousands of similar sequences in the genome. Here, Peter Becker and colleagues show that recognition of the X chromosome is an intrinsic feature of the MSL-DCC. The MSL2 subunit uses two distinct DNA interaction surfaces to distinguish a subset of MSL2 binding sites — termed PionX — which are defined not only by additional sequence features but also by a distinct DNA conformation (base roll). These sites originated early during X chromosome evolution. The results are an example of how transcription factors can distinguish a minority of functional DNA elements from a large pool of similar but non-functional sequences. The rules defining which small fraction of related DNA sequences can be selectively bound by a transcription factor are poorly understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the distinction between sex chromosomes and autosomes. In Drosophila melanogaster, the male-specific lethal dosage compensation complex (MSL-DCC) doubles the level of transcription from the single male X chromosome, but the nature of this selectivity is not known1. Previous efforts to identify X-chromosome-specific target sequences were unsuccessful as the identified MSL recognition elements lacked discriminative power2,3. Therefore, additional determinants such as co-factors, chromatin features, RNA and chromosome conformation have been proposed to refine targeting further4. Here, using an in vitro genome-wide DNA binding assay, we show that recognition of the X chromosome is an intrinsic feature of the MSL-DCC. MSL2, the male-specific organizer of the complex, uses two distinct DNA interaction surfaces—the CXC and proline/basic-residue-rich domains—to identify complex DNA elements on the X chromosome. Specificity is provided by the CXC domain, which binds a novel motif defined by DNA sequence and shape. This motif characterizes a subclass of MSL2-binding sites, which we name PionX (pioneering sites on the X) as they appeared early during the recent evolution of an X chromosome in D. miranda and are the first chromosomal sites to be bound during de novo MSL-DCC assembly. Our data provide the first, to our knowledge, documented molecular mechanism through which the dosage compensation machinery distinguishes the X chromosome from an autosome. They highlight fundamental principles in the recognition of complex DNA elements by protein that will have a strong impact on many aspects of chromosome biology.

Journal ArticleDOI
TL;DR: It is found that sex-biased gene expression has evolved in autosomal and sex-linked genes in the dioecious species and supports a scenario in which sex- biased gene expression evolved during the evolution of dIOecy to resolve intralocus sexual conflicts over the allocation of resources.
Abstract: Separate sexes and sex-biased gene expression have repeatedly evolved in animals and plants, but the underlying changes in gene expression remain unknown. Here, we studied a pair of plant species, one in which separate sexes and sex chromosomes evolved recently and one which maintained hermaphrodite flowers resembling the ancestral state, to reconstruct expression changes associated with the evolution of dioecy. We found that sex-biased gene expression has evolved in autosomal and sex-linked genes in the dioecious species. Most expression changes relative to hermaphrodite flowers occurred in females rather than males, with higher and lower expression in females leading to female-biased and male-biased expression, respectively. Expression changes were more common in genes located on the sex chromosomes than the autosomes and led to feminization of the X chromosome and masculinization of the Y chromosome. Our results support a scenario in which sex-biased gene expression evolved during the evolution of dioecy to resolve intralocus sexual conflicts over the allocation of resources. The evolution of sex-biased gene expression in plants is elusive. By comparing the transcriptomes of two closely related species of different mating systems, a study has found that the change in expression preferentially occurred in females and in sex-linked genes.

Journal ArticleDOI
TL;DR: Six females from independent families with a common neurodevelopmental phenotype including developmental delay, intellectual disability, autism, hypotonia, and seizures are identified with de novo predicted deleterious variants in the nuclear localization signal of Heterogeneous Nuclear Ribonucleoprotein H2, encoded by HNRNPH2, a gene located on the X chromosome.
Abstract: Via whole-exome sequencing, we identified six females from independent families with a common neurodevelopmental phenotype including developmental delay, intellectual disability, autism, hypotonia, and seizures, all with de novo predicted deleterious variants in the nuclear localization signal of Heterogeneous Nuclear Ribonucleoprotein H2, encoded by HNRNPH2, a gene located on the X chromosome. Many of the females also have seizures, psychiatric co-morbidities, and orthopedic, gastrointestinal, and growth problems as well as common dysmorphic facial features. HNRNPs are a large group of ubiquitous proteins that associate with pre-mRNAs in eukaryotic cells to produce a multitude of alternatively spliced mRNA products during development and play an important role in controlling gene expression. The failure to identify affected males, the severity of the neurodevelopmental phenotype in females, and the essential role of this gene suggests that male conceptuses with these variants may not be viable.

Journal ArticleDOI
TL;DR: Analysis of cell-specific gene expression across spermatogenesis in two lineages of house mice reveals a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation.
Abstract: The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination.

Journal ArticleDOI
TL;DR: A novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem” is developed, and its accuracy is evaluated using simulated datasets.
Abstract: Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving "the travelling salesman problem", and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

Journal ArticleDOI
28 Apr 2016-PLOS ONE
TL;DR: The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.
Abstract: We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic hybridization identified six whole gene deletions: four encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regulatory effects were identified: five that were 3' (telomeric) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint. Disruption of PHF21A has previously been implicated in the causation of intellectual disability (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals (12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.

Journal ArticleDOI
01 May 2016-Genetics
TL;DR: In this paper, the authors investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females and found that diversity in PAR1 is significantly greater than in the non-recombining regions (nonPARs).
Abstract: Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.

Journal ArticleDOI
TL;DR: Several novel proteins have now been shown to be required for the transcriptional silencing of the X chromosome and/or Xist spreading and localization to the inactive X chromosome and reviewed in the context of existing knowledge about Xist-interacting factors.

Journal ArticleDOI
TL;DR: The molecular and cellular mechanisms underlying Spiroplasma-induced embryonic male lethality in Drosophila melanogaster are uncovered and symbiont's sophisticated strategy to target host's sex chromosome and recruit host's molecular cascades toward massive apoptosis in a sex-specific manner is highlighted.
Abstract: Some symbiotic bacteria are capable of interfering with host reproduction in selfish ways. How such bacteria can manipulate host's sex-related mechanisms is of fundamental interest encompassing cell, developmental and evolutionary biology. Here, we uncover the molecular and cellular mechanisms underlying Spiroplasma-induced embryonic male lethality in Drosophila melanogaster. Transcriptomic analysis reveals that many genes related to DNA damage and apoptosis are up-regulated specifically in infected male embryos. Detailed genetic and cytological analyses demonstrate that male-killing Spiroplasma causes DNA damage on the male X chromosome interacting with the male-specific lethal (MSL) complex. The damaged male X chromosome exhibits a chromatin bridge during mitosis, and bridge breakage triggers sex-specific abnormal apoptosis via p53-dependent pathways. Notably, the MSL complex is not only necessary but also sufficient for this cytotoxic process. These results highlight symbiont's sophisticated strategy to target host's sex chromosome and recruit host's molecular cascades toward massive apoptosis in a sex-specific manner.

Journal ArticleDOI
TL;DR: Recent experimental and clinical evidence giving insight into SRY-negative 46,XX testicular or ovotesticular DSD is discussed.
Abstract: Virilisation of the XX foetus is the result of androgen excess, resulting most frequently from congenital adrenal hyperplasia in individuals with typical ovarian differentiation. In rare cases, 46,XX gonads may differentiate into testes, a condition known as 46,XX testicular disorders of sex development (DSD), or give rise to the coexistence of ovarian and testicular tissue, a condition known as 46,XX ovotesticular DSD. Testicular tissue differentiation may be due to the translocation of SRY to the X chromosome or an autosome. In the absence of SRY, overexpression of other pro-testis genes, e.g. SOX family genes, or failure of pro-ovarian/anti-testis genes, such as WNT4 and RSPO1, may underlie the development of testicular tissue. Recent experimental and clinical evidence giving insight into SRY-negative 46,XX testicular or ovotesticular DSD is discussed.