scispace - formally typeset
Search or ask a question
Topic

X chromosome

About: X chromosome is a research topic. Over the lifetime, 9862 publications have been published within this topic receiving 407354 citations. The topic is also known as: GO:0000805 & chrX.


Papers
More filters
Journal ArticleDOI
TL;DR: Current cytological and molecular knowledge on the tissue‐specific cell mechanisms evolved to achieve chromosome elimination in sciarids are reviewed.
Abstract: The programmed elimination of part of the genome through chromosome loss or chromatin diminution constitutes an exceptional biological process found to be present in several diverse groups of organisms. The occurrence of this phenomenon during early embryogenesis is generally correlated to somatic versus germ-line differentiation. A most outstanding example of chromosome elimination and genomic imprinting is found in sciarid flies, where whole chromosomes of exclusive parental origin are selectively eliminated at different developmental stages. Three types of tissue-specific chromosome elimination events occur in sciarids. During early cleavages, one or two X paternal chromosomes is/are discarded from somatic cells of embryos which then develop as females or males respectively. Thus, the sex of the embryo is determined by the number of eliminated paternal X chromosomes. In germ cells, instead, a single paternal X chromosome is eliminated in embryos of both sexes. In addition, while female meiosis is orthodox, male meiosis is highly unusual as the whole paternal chromosome set is discarded from spermatocytes. As a consequence, only maternally derived chromosomes are included in the functional sperm. This paper reviews current cytological and molecular knowledge on the tissue-specific cell mechanisms evolved to achieve chromosome elimination in sciarids.

127 citations

Journal ArticleDOI
TL;DR: The chromosomes of 81 pediatric germ cell tumors were analyzed as part of two clinical treatment trials, INT‐0098 andINT‐0097, and showed differences with respect to sex, age, tumor location, and histology.
Abstract: The chromosomes of 81 pediatric germ cell tumors (GCTs) were analyzed as part of two clinical treatment trials, INT-0098 and INT-0097, conducted by the Children's Cancer Group. The analysis of chromosome results showed differences with respect to sex, age, tumor location, and histology. Sixteen of 17 benign teratomas of infants and children less than 4 years old and from gonadal and extragonadal locations were chromosomally normal. Twenty-three malignant GCTs from gonadal and extragonadal locations of the same age group were endodermal sinus tumors and varied in their karyotypic findings. The most common abnormalities were gains of 1q and chromosome 3. Of eight benign ovarian teratomas from older girls, five with normal G-banded karyotypes were determined to be homozygous for Q-band heteromorphisms, suggesting a meiosis II error. Among the 12 malignant ovarian GCTs from older girls, the common abnormalities were loss of 1p/gain of 1q, +3, +8, +14, and +21. Four of eight extragonadal tumors from older boys demonstrated +21; one had +X. Five of the eight had associated constitutional chromosome abnormalities, including one trisomy 21 and three with Klinefelter syndrome. The testicular GCTs of adolescents had abnormalities resembling those found in adult testicular GCT, including near-triploidy, loss of chromosomes 11, 13, and 18, and gain of chromosomes 7, 8, the X chromosome, and an isochromosome 12p. The gain of an isochromosome 12p was only frequent in the tumors from adolescent boys. Deletion of 1p/gain of 1q and +3 were the most common abnormalities among the malignant tumors from both sexes.

127 citations

Journal ArticleDOI
TL;DR: New insights are provided into the large-scale changes in the composition and organization of chromatin associated with spermatogenesis and it is argued that H2A.Z has a unique role in maintaining sex chromosomes in a repressed state.
Abstract: Spermatogenesis is a complex sequential process that converts mitotically dividing spermatogonia stem cells into differentiated haploid spermatozoa. Not surprisingly, this process involves dramatic nuclear and chromatin restructuring events, but the nature of these changes are poorly understood. Here, we linked the appearance and nuclear localization of the essential histone variant H2A.Z with key steps during mouse spermatogenesis. H2A.Z cannot be detected during the early stages of spermatogenesis, when the bulk of X-linked genes are transcribed, but its expression begins to increase at pachytene, when meiotic sex chromosome inactivation (MSCI) occurs, peaking at the round spermatid stage. Strikingly, when H2A.Z is present, there is a dynamic nuclear relocalization of heterochromatic marks (HP1β and H3 di- and tri-methyl K9), which become concentrated at chromocenters and the inactive XY body, implying that H2A.Z may substitute for the function of these marks in euchromatin. We also show that the X and the Y chromosome are assembled into facultative heterochromatic structures postmeiotically that are enriched with H2A.Z, thereby replacing macroH2A. This indicates that XY silencing continues following MSCI. These results provide new insights into the large-scale changes in the composition and organization of chromatin associated with spermatogenesis and argue that H2A.Z has a unique role in maintaining sex chromosomes in a repressed state.

127 citations

Journal ArticleDOI
TL;DR: It is shown that human TSIX antisense transcripts are unable to repress XIST, and serves as a mutant for mouse Tsix, providing insights into features responsible for antisense activity in imprinted X inactivation.
Abstract: Transcriptional silencing of the human inactive X chromosome is induced by the XIST gene within the human X-inactivation center. The XIST allele must be turned off on one X chromosome to maintain its activity in cells of both sexes. In the mouse placenta, where X inactivation is imprinted (the paternal X chromosome is always inactive), the maternal Xist allele is repressed by a cis-acting antisense transcript, encoded by the Tsix gene. However, it remains to be seen whether this antisense transcript protects the future active X chromosome during random inactivation in the embryo proper. We recently identified the human TSIX gene and showed that it lacks key regulatory elements needed for the imprinting function of murine Tsix. Now, using RNA FISH for cellular localization of transcripts in human fetal cells, we show that human TSIX antisense transcripts are unable to repress XIST. In fact, TSIX is transcribed only from the inactive X chromosome and is coexpressed with XIST. Also, TSIX is not maternally imprinted in placental tissues, and its transcription persists in placental and fetal tissues, throughout embryogenesis. Therefore, the repression of Xist by mouse Tsix has no counterpart in humans, and TSIX is not the gene that protects the active X chromosome from random inactivation. Because human TSIX cannot imprint X inactivation in the placenta, it serves as a mutant for mouse Tsix, providing insights into features responsible for antisense activity in imprinted X inactivation.

126 citations

Journal ArticleDOI
TL;DR: Current knowledge on the epigenetic changes that accompany X inactivation are summarized and the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer is discussed.

126 citations


Network Information
Related Topics (5)
Exon
38.3K papers, 1.7M citations
90% related
Mutation
45.2K papers, 2.6M citations
89% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
86% related
Locus (genetics)
42.7K papers, 2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202372
2022124
2021192
2020179
2019190
2018186