scispace - formally typeset
Search or ask a question
Topic

X chromosome

About: X chromosome is a research topic. Over the lifetime, 9862 publications have been published within this topic receiving 407354 citations. The topic is also known as: GO:0000805 & chrX.


Papers
More filters
Journal ArticleDOI
TL;DR: The results establish at the molecular level that canine X- linked HN is a model for human X-linked HN and the role of the alpha 5(IV) chain in type IV collagen assembly is investigated.
Abstract: Many families with X-chromosome linked hereditary nephritis (HN) have mutations in the gene on the X chromosome that codes for the alpha 5 chain of collagen type IV. Canine X-linked HN is an animal model for human X-linked HN. To study the alpha 5(IV) gene in this model, we used the nucleotide sequence published for the human alpha 5(IV) cDNA to construct sets of primers covering approximately 95% of the complete cDNA. cDNA from both affected and normal dog kidneys was amplified by PCR in nine overlapping regions. The nucleotide sequence encoding the noncollagenous domain NC1 hybridized to the human X chromosome and was 93% identical at the DNA level and 97% identical at the protein level to the human alpha 5(IV) NC1 domain, confirming that the canine alpha 5(IV) cDNA had been amplified. Sequence analysis of the alpha 5(IV) cDNA detected a single nucleotide substitution, G-->T, in affected dogs, changing a codon for a conserved glycine residue (GGA) to a stop codon (TGA). When genomic DNA was amplified, the same abnormality was found in exon 35. Using the canine NC1 domain cDNA as a probe for Northern analysis, two transcripts of approximately 8.6 kb and approximately 6.7 kb were identified in both normal and affected male dog kidney RNA. However, the abundance of both transcripts was decreased by a factor of approximately 10 in the affected dog. These results establish at the molecular level that canine X-linked HN is a model for human X-linked HN. This model provides an opportunity to determine the efficacy of new therapies and to investigate the role of the alpha 5(IV) chain in type IV collagen assembly.

116 citations

Journal ArticleDOI
TL;DR: The exceptionally important role of the X chromosome in brain function, evident from the prevalence of X-linked forms of mental retardation, is discussed in view of sex chromosome regulation and evolution and sexual reproduction.

116 citations

Journal ArticleDOI
TL;DR: The structure and the biological functions of this peculiar chromosome are reviewed, including a region associated to Turner estigmata and genes related to germ cell development and maintenance and then, related with male fertility.
Abstract: "Functional wasteland," "Nonrecombining desert" and "Gene-poor chromosome" are only some examples of the different definitions given to the Y chromosome in the last decade. In comparison to the other chromosomes, the Y is poor in genes, being more than 50% of its sequence composed of repeated elements. Moreover, the Y genes are in continuous decay probably due to the lack of recombination of this chromosome. But the human Y chromosome, at the same time, plays a central role in human biology. The presence or absence of this chromosome determines gonadal sex. Thus, mammalian embryos with a Y chromosome develop testes, while those without it develop ovaries (Polani, 1981). What is responsible for the male phenotype is the testis-determining SRY gene (Sinclair, 1990) which remains the most distinguishing characteristic of this chromosome. In addition to SRY, the presence of other genes with important functions has been reported, including a region associated to Turner estigmata, a gene related to the development of gonadoblastoma and, most important, genes related to germ cell development and maintenance and then, related with male fertility (Lahn and Page, 1997). This paper reviews the structure and the biological functions of this peculiar chromosome.

116 citations

Journal Article
TL;DR: Results obtained from a fluorescence analysis of DNA replication in X chromosomes are consistent with those from previous autoradiographic studies, but reflect additional sensitivity and resolution offered by the BrdU-Hoechst methodology.
Abstract: The genetically inactive, late-replicating human female X chromosome can be effectively distinguished from its more active, earlier-replicating homologue, when cells are grown according to the appropriate BrdU-33258 Hoechst protocol. Results obtained from a fluorescence analysis of DNA replication in X chromosomes are consistent with those from previous autoradiographic studies, but reflect additional sensitivity and resolution offered by the BrdU-Hoechst methodology. Both qualitative and quantitative differences in 33258 Hoechst fluorescence intensity, reflecting alterations in replication kinetics, can be detected between the two X chromosomes in female cells. The pattern of replication in the single X chromosome in male cells is indistinguishable from that of the early female X. Intercellular fluctuations in the distribution of regions replicating early or late in S phase, particularly with reference to the late female X, can be localized to structural bands, suggesting multifocal control of DNA synthesis in X chromosomes.

116 citations

Journal ArticleDOI
TL;DR: This analysis of the evolution of X-linked and autosomal genes in two closely related species in a whole-genome analysis found synonymous substitutions on the X chromosome of human and chimpanzee to be less frequent than those on the autosomes.
Abstract: The effect of weak selection driving genome evolution has attracted much attention in the last decade, but the task of measuring the strength of such selection is particularly difficult. A useful approach is to contrast the evolution of X-linked and autosomal genes in two closely related species in a whole-genome analysis. If the fitness effect of mutations is recessive, X-linked genes should evolve more rapidly than autosomal genes when the mutations are advantageous, and they should evolve more slowly than autosomal genes when the mutations are deleterious. We found synonymous substitutions on the X chromosome of human and chimpanzee to be less frequent than those on the autosomes. When calibrated against substitutions in the intergenic regions and pseudogenes to filter out the differences in the mutation rate and ancestral population size between X chromosomes and autosomes, X-linked synonymous substitutions are still 10% less frequent. At least 90% of the synonymous substitutions in human and chimpanzee are estimated to be deleterious, but the fitness effect is weaker than the effect of genetic drift. However, X-linked nonsynonymous substitutions are ≈30% more frequent than autosomal ones, suggesting the fixation of advantageous mutations that are recessive.

116 citations


Network Information
Related Topics (5)
Exon
38.3K papers, 1.7M citations
90% related
Mutation
45.2K papers, 2.6M citations
89% related
Gene mutation
41.4K papers, 1.3M citations
87% related
Intron
23.8K papers, 1.3M citations
86% related
Locus (genetics)
42.7K papers, 2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202372
2022124
2021192
2020179
2019190
2018186