scispace - formally typeset
Search or ask a question
Topic

X-ray lithography

About: X-ray lithography is a research topic. Over the lifetime, 5302 publications have been published within this topic receiving 70850 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple technique for the computation of the proximity effect in electron-beam lithography is presented, which gives results of the exposure intensity received at any given point in a pattern area using a reciprocity principle.
Abstract: A simple technique for the computation of the proximity effect in electron‐beam lithography is presented. The calculations give results of the exposure intensity received at any given point in a pattern area using a reciprocity principle. Good agreement between the computed results and experimental data was achieved.

459 citations

Journal ArticleDOI
TL;DR: This result has paved the way towards portable three-dimensional maskless laser direct writing with resolution fully comparable to electron beam lithography with dependence of the feature size and the two-line resolution in a newly developed two-photon absorption resin with high mechanical strength.
Abstract: The current nanofabrication techniques including electron beam lithography provide fabrication resolution in the nanometre range. The major limitation of these techniques is their incapability of arbitrary three-dimensional nanofabrication. This has stimulated the rapid development of far-field three-dimensional optical beam lithography where a laser beam is focused for maskless direct writing. However, the diffraction nature of light is a barrier for achieving nanometre feature and resolution in optical beam lithography. Here we report on three-dimensional optical beam lithography with 9 nm feature size and 52 nm two-line resolution in a newly developed two-photon absorption resin with high mechanical strength. The revealed dependence of the feature size and the two-line resolution confirms that they can reach deep sub-diffraction scale but are limited by the mechanical strength of the new resin. Our result has paved the way towards portable three-dimensional maskless laser direct writing with resolution fully comparable to electron beam lithography.

420 citations

Journal ArticleDOI
16 Jan 2008
TL;DR: In this paper, the authors focus on the benefits of using ICs at the 22-nm node and beyond, and no shortage of ideas on how to accomplish this, although it is not clear that optics will be the most economical in this range; extreme ultraviolet is still the official front runner, and electron beam lithography, which has demonstrated minimum features less than 10 nm wide, continues to be developed both for mask making and for directly writing on the wafer (also known as ldquomaskless lithographyrdquo).
Abstract: For all technologies, from flint arrowheads to DNA microarrays, patterning the functional material is crucial. For semiconductor integrated circuits (ICs), it is even more critical than for most technologies because enormous benefits accrue to going smaller, notably higher speed and much less energy consumed per computing function. The consensus is that ICs will continue to be manufactured until at least the ldquo22 nm noderdquo (the linewidth of an equal line-space pattern). Most patterning of ICs takes place on the wafer in two steps: (a) lithography, the patterning of a resist film on top of the functional material; and (b) transferring the resist pattern into the functional material, usually by etching. Here we concentrate on lithography. Optics has continued to be the chosen lithographic route despite its continually forecast demise. A combination of 193-nm radiation, immersion optics, and computer-intensive resolution enhancement technology will probably be used for the 45- and 32-nm nodes. Optical lithography usually requires that we first make a mask and then project the mask pattern onto a resist-coated wafer. Making a qualified mask, although originally dismissed as a ldquosupport technology,rdquo now represents a significant fraction of the total cost of patterning an IC largely because of the measures needed to push resolution so far beyond the normal limit of optical resolution. Thus, although optics has demonstrated features well below 22 nm, it is not clear that optics will be the most economical in this range; nanometer-scale mechanical printing is a strong contender, extreme ultraviolet is still the official front runner, and electron beam lithography, which has demonstrated minimum features less than 10 nm wide, continues to be developed both for mask making and for directly writing on the wafer (also known as ldquomaskless lithographyrdquo). Going from laboratory demonstration to manufacturing technology is enormously expensive ( $1 billion) and for good reason. Just in terms of data rate (mask pattern to resist pattern), today's exposure tools achieve about 10 Tb/s at an allowable error rate of about 1/h; this data rate will double with each generation. In addition, the edge placement precision required will soon be 30 parts per billion. There are so many opportunities for unacceptable performance that making the right decision goes far beyond understanding the underlying physical principles. But the benefits of continuing to be able to manufacture electronics at the 22-nm node and beyond appear to justify the investment, and there is no shortage of ideas on how to accomplish this.

410 citations

Journal ArticleDOI
TL;DR: This work investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope and achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist.
Abstract: We investigated electron-beam lithography with an aberration-corrected scanning transmission electron microscope. We achieved 2 nm isolated feature size and 5 nm half-pitch in hydrogen silsesquioxane resist. We also analyzed the resolution limits of this technique by measuring the point-spread function at 200 keV. Furthermore, we measured the energy loss in the resist using electron-energy-loss spectroscopy.

381 citations

Proceedings ArticleDOI
23 Jun 1997
TL;DR: A new lithography paradigm that is based on deformation of a resist by compression molding rather than altering its chemical structure by radiation, and is designed to fabricate nanostructures inexpensively with high throughput is presented.
Abstract: Nanoimprint lithography (NIL) is a new lithography paradigm that is based on deformation of a resist by compression molding rather than altering its chemical structure by radiation, and is designed to fabricate nanostructures inexpensively with high throughput. In this paper, we present significant new developments in achieving holes and dots with 6 nm feature size, 40 nm period on silicon, and 10 nm feature size, 40 nm period on a Au substrate. Moreover, we present an application of NIL to the fabrication of nanoscale compact disks (NanoCDs) of 400 Gbits/in/sup 2/ data density.

367 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
86% related
Thin film
275.5K papers, 4.5M citations
84% related
Transistor
138K papers, 1.4M citations
82% related
Nanowire
52K papers, 1.5M citations
82% related
Photoluminescence
83.4K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202227
20215
20207
201910
201814