scispace - formally typeset
Search or ask a question
Topic

X-ray optics

About: X-ray optics is a research topic. Over the lifetime, 2194 publications have been published within this topic receiving 51961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Abstract: Optical lenses have for centuries been one of scientists’ prime tools. Their operation is well understood on the basis of classical optics: curved surfaces focus light by virtue of the refractive index contrast. Equally their limitations are dictated by wave optics: no lens can focus light onto an area smaller than a square wavelength. What is there new to say other than to polish the lens more perfectly and to invent slightly better dielectrics? In this Letter I want to challenge the traditional limitation on lens performance and propose a class of “superlenses,” and to suggest a practical scheme for implementing such a lens. Let us look more closely at the reasons for limitation in performance. Consider an infinitesimal dipole of frequency v in front of a lens. The electric component of the field will be given by some 2D Fourier expansion,

10,974 citations

Journal ArticleDOI
TL;DR: A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range, which results from the plasmon resonance in the pairs of nanorod for both the electric and the magnetic components of light.
Abstract: A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and reflection, which are all in excellent agreement with simulations. Both experiments and simulations demonstrate that a negative refractive index n???0.3 is achieved at the optical communication wavelength of 1.5??m using the array of nanorods. The retrieved refractive index critically depends on the phase of the transmitted wave, which emphasizes the importance of phase measurements in finding n?.

1,567 citations

Journal ArticleDOI
TL;DR: In this article, a general treatment of the scattering of radiation by an inhomogeneous material is developed, where scattering measurements can be used to obtain the average square of the fluctuations in refractive index or electron density and a correlation function which measures the degree of correlation between two fluctuations as a function of their distance of separation.
Abstract: A general treatment of the scattering of radiation by an inhomogeneous material is developed. It is shown how scattering measurements can be used to obtain the average square of the fluctuations in refractive index or electron density and a correlation function which measures the degree of correlation between two fluctuations as a function of their distance of separation.The scattering of visible light by Lucite and two glass samples has been investigated. The data are analyzed in terms of the quantities mentioned above. It is found that the extensions in space of the inhomogeneities in the Lucite sample are much greater than those in the optical glass samples investigated. The magnitudes of the fluctuations in refractive index are found to be dependent on the composition of the sample.

1,367 citations

Journal ArticleDOI
01 Nov 1996-Nature
TL;DR: In this article, a simple procedure for fabricating refractive lenses that are effective for focusing of X-rays in the energy range 5-40 keV is described, and the problem associated with absorption is minimized by fabricating the lenses from low-atomic-weight materials.
Abstract: THE development of techniques for focusing X-rays has occupied physicists for more than a century. Refractive lenses, which are used extensively in visible-light optics, are generally considered inappropriate for focusing X-rays, because refraction effects are extremely small and absorption is strong. This has lead to the development of alternative approaches1,2 based on bent crystals and X-ray mirrors, Fresnel and Bragg–Fresnel zone plates, and capillary optics (Kumakhov lenses). Here we describe a simple procedure for fabricating refractive lenses that are effective for focusing of X-rays in the energy range 5–40 keV. The problems associated with absorption are minimized by fabricating the lenses from low-atomic-weight materials. Refraction of X-rays by one such lens is still extremely small, but a compound lens (consisting of tens or hundreds of individual lenses arranged in a linear array) can readily focus X-rays in one or two dimensions. We have fabricated a compound lens by drilling 30 closely spaced holes (each having a radius of 0.3 mm) in an aluminium block, and we demonstrate its effectiveness by focusing a 14-keV X-ray beam to a spot size of 8 μm.

973 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the fundamental concepts and ideas of negative refractive index materials and present the ideas of meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability, and negative fringes.
Abstract: In the past few years, new developments in structured electromagnetic materials have given rise to negative refractive index materials which have both negative dielectric permittivity and negative magnetic permeability in some frequency ranges. The idea of a negative refractive index opens up new conceptual frontiers in photonics. One much-debated example is the concept of a perfect lens that enables imaging with sub-wavelength image resolution. Here we review the fundamental concepts and ideas of negative refractive index materials. First we present the ideas of structured materials or meta-materials that enable the design of new materials with a negative dielectric permittivity, negative magnetic permeability and negative refractive index. We discuss how a variety of resonance phenomena can be utilized to obtain these materials in various frequency ranges over the electromagnetic spectrum. The choice of the wave-vector in negative refractive index materials and the issues of dispersion, causality and energy transport are analysed. Various issues of wave propagation including nonlinear effects and surface modes in negative refractive materials (NRMs) are discussed. In the latter part of the review, we discuss the concept of a perfect lens consisting of a slab of a NRM. This perfect lens can image the far-field radiative components as well as the nearfield evanescent components, and is not subject to the traditional diffraction limit. Different aspects of this lens such as the surface modes acting as the mechanism for the imaging of the evanescent waves, the limitations imposed by dissipation and dispersion in the negative refractive media, the generalization of this lens to optically complementary media and the possibility of magnification of the near-field images are discussed. Recent experimental developments verifying these ideas are briefly covered. (Some figures in this article are in colour only in the electronic version)

867 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
85% related
Detector
146.5K papers, 1.3M citations
83% related
Laser
353.1K papers, 4.3M citations
82% related
Semiconductor
72.6K papers, 1.2M citations
82% related
Beam (structure)
155.7K papers, 1.4M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202274
202118
202036
201931
201837