scispace - formally typeset
Search or ask a question
Topic

X-shaped radio galaxy

About: X-shaped radio galaxy is a research topic. Over the lifetime, 4027 publications have been published within this topic receiving 128141 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a unified model of nuclear activity and a unified approach to infer the pressures, densities, and fluid velocities within jets are explained. But the model is not applicable to the case of relativistic radio sources.
Abstract: Powerful extragalactic radio sources comprise two extended regions containing magnetic field and synchrotron-emitting relativistic electrons, each linked by a jet to a central compact radio source located in the nucleus of the associated galaxy. These jets are collimated streams of plasma that emerge from the nucleus in opposite directions, along which flow mass, momentum, energy, and magnetic flux. Methods of using the observations diagnostically to infer the pressures, densities, and fluid velocities within jets are explained. The jets terminate in the extended radio components, where they interact strongly with the surrounding medium through a combination of shock waves and instabilities. Jets may expand freely, be confined by external gas pressure, or be pinched by toroidal magnetic fields. Shear flows are known to be Kelvin-Helmholtz unstable and thus may be responsible for some of the observed oscillation of jets about their mean directions and for creating the turbulence and shock waves needed to accelerate the relativistic electrons. Larger-scale bending may be caused by changes in the jet axis within the nucleus, gravitational interaction of the radio galaxy with a companion galaxy, or rapid motion of the source through dense intergalactic gas. The compact radio sources also exhibit a jet morphology and contain more direct clues as to the origins of jets; in particular, the variations sometimes observed imply bulk flows that are relativistic. It is widely believed that nuclear activity is ultimately ascribable to gas accreting onto a massive black hole. The accretion can proceed in several different fashions, depending upon whether or not the gas has angular momentum and whether or not the radiation emitted is sufficiently intense to influence the dynamics of the flow. Several distinct mechanisms for jet production in the context of black holes have been proposed. (Alternative mechanisms involving dense star clusters and massive spinning stars are also reviewed.) Supersonic jets may be collimated along the spin axis of a gas cloud surrounding the source of the lighter jet gas. Magnetic fields may be crucial in collimating jets, especially if they are wrapped around the jet by orbiting gas and can thereby collimate the outflow through the pinch effect. In fact, the spin energy of the black hole could also be extracted by magnetic torques, in which case the jet would contain electrons and positrons and carry a large electromagnetic Poynting flux. Statistical investigations of active galaxies also furnish valuable information on their nature and evolutionary behavior. The formation of particular kinds of sources appears to be correlated with environmental effects and cosmic epoch. In addition, the brightest compact radio sources on the sky, which probably involve relativistic motion, may be intrinsically faint objects beamed in our direction. There is now compelling evidence for the continuous fueling of extragalactic radio sources through jets emerging from the nucleus of the associated galaxy. The morphological classification of radio sources is interpreted in terms of the powers, speeds, and surroundings of jets. The ratio of the mass accretion rate to the mass of the hole may determine whether an active nucleus will be primarily a thermal object like an optical quasar or a nonthermal object like a radio galaxy. The authors outline a unified model of nuclear activity and assess what future progress may stem from observational developments (especially the proposed very long baseline array), experimental approaches (such as wind tunnel simulations), and theoretical studies (in particular, large-scale numerical hydrodynamical computing).

1,570 citations

Journal ArticleDOI
01 Jan 1968-Nature
TL;DR: In this article, the first report of a curious class of astronomical radio sources, distinguished by their rapid and extremely regular pulsations, was made by Hewish et al. They are now understood to be rapidly rotating, magnetized neutron stars, or pulsars.
Abstract: Unusual signals from pulsating radio sources have been recorded at the Mullard Radio Astronomy Observatory The radiation seems to come from local objects within the galaxy, and may be associated with oscillations of white dwarf or neutron stars 1968 saw the first report of a curious class of astronomical radio sources, distinguished by their rapid and extremely regular pulsations Hewish et al associated them with unusually stable oscillations in compact stars They are now understood to be rapidly rotating, magnetized neutron stars, or pulsars

1,554 citations

Journal ArticleDOI
01 Sep 1994-Nature
TL;DR: In this paper, the first apparent superluminal motion was detected in a source within our own Galaxy and the optical, infrared and X-ray properties suggest that the source is either a neutron star or a black hole that is ejecting matter in a process similar to, but on a smaller scale than that seen in quasars.
Abstract: APPARENT velocities greater than the speed of light (superluminal motion) have been inferred for radio-emitting components in a number of distant quasars and active galactic nuclei1. These components move away from the central sources (generally thought to be super-massive black holes) at rates that seem to imply velocities greater than c. The accepted explanation is that clouds of plasma are ejected in opposite directions from the central source at speeds close to (but less than) that of light, and that relativistic effects lead to the apparent superluminal motion2. But the extreme distance of the objects observed so far introduces many uncertainties into this interpretation3. Here we present observations of the first apparent superluminal motion ever detected in a source within our own Galaxy. The optical, infrared and X-ray properties4,5 of the counterpart suggest that the source is either a neutron star or a black hole that is ejecting matter in a process similar to, but on a smaller scale than that seen in quasars. Because of its relative proximity, this superluminal microquasar may offer the best opportunity to gain a general understanding of relativistic ejections seen elsewhere in the Universe.

1,161 citations


Network Information
Related Topics (5)
Elliptical galaxy
20.9K papers, 1M citations
96% related
Galaxy
109.9K papers, 4.7M citations
96% related
Star formation
37.4K papers, 1.8M citations
96% related
Quasar
21.3K papers, 1M citations
95% related
Active galactic nucleus
20.7K papers, 996.7K citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202226
20213
20202
20192
20186