scispace - formally typeset
Search or ask a question

Showing papers on "XANES published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the as-fabricated Ni cationic vacancies (VNi)−enriched Ni2−xP−VNi electrocatalyst exhibits remarkable 2e ORR performance with H2O2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials.
Abstract: Electrocatalytic hydrogen peroxide (H2O2) synthesis via the two‐electron oxygen reduction reaction (2e ORR) pathway is becoming increasingly important due to the green production process. Here, cationic vacancies on nickel phosphide, as a proof‐of‐concept to regulate the catalyst's physicochemical properties, are introduced for efficient H2O2 electrosynthesis. The as‐fabricated Ni cationic vacancies (VNi)‐enriched Ni2−xP‐VNi electrocatalyst exhibits remarkable 2e ORR performance with H2O2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials. Impressively, the as‐created VNi possesses superb long‐term durability for over 50 h, suppassing all the recently reported catalysts for H2O2 electrosynthesis. Operando X‐ray absorption near‐edge spectroscopy (XANES) and synchrotron Fourier transform infrared (SR‐FTIR) combining theoretical calculations reveal that the excellent catalytic performance originates from the VNi‐induced geometric and electronic structural optimization, thus promoting oxygen adsorption to the 2e ORR favored “end‐on” configuration. It is believed that the demonstrated cation vacancy engineering is an effective strategy toward creating active heterogeneous catalysts with atomic precision.

96 citations


Journal ArticleDOI
TL;DR: In this article , a CO2RR catalyst comprising of CuO clusters supported on N-doped carbon nanosheets, which exhibited high C2+ products Faradaic efficiency of 73% including decent ethanol selectivity of 51% with a partial current density of 14.4 mA/cm-2 at -1.1 V vs. RHE.
Abstract: Copper-based materials can reliably convert carbon dioxide into multi-carbon products but they suffer from poor activity and product selectivity. The atomic structure-activity relationship of electrocatalysts for the selectivity is controversial due to the lacking of systemic multiple dimensions for operando condition study. Herein, we synthesized high-performance CO2RR catalyst comprising of CuO clusters supported on N-doped carbon nanosheets, which exhibited high C2+ products Faradaic efficiency of 73% including decent ethanol selectivity of 51% with a partial current density of 14.4 mA/cm-2 at -1.1 V vs. RHE. We evidenced catalyst restructuring and tracked the variation of the active states under reaction conditions, presenting the atomic structure-activity relationship of this catalyst. Operando XAS, XANES simulations and Quasi-in-situ XPS analyses identified a reversible potential-dependent transformation from dispersed CuO clusters to Cu2-CuN3 clusters which are the optimal sites. This cluster can't exist without the applied potential. The N-doping dispersed the reduced Cun clusters uniformly and maintained excellent stability and high activity with adjusting the charge distribution between the Cu atoms and N-doped carbon interface. By combining Operando FTIR and DFT calculations, it was recognized that the Cu2-CuN3 clusters displayed charge-asymmetric sites which were intensified by CH3* adsorbing, beneficial to the formation of the high-efficiency asymmetric ethanol.

54 citations


Journal ArticleDOI
TL;DR: In this article , the reverse spillover effect of NiO/Al2O3/Pt catalysts in hydrogen generation was investigated. But the contribution of reverse spillovers to hydrogen generation reactions is still controversial.
Abstract: The contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/Al2O3/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/Al2O3/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of Al2O3 nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H2 generation rates for NiO/Al2O3/Pt. For the CoOx/Al2O3/Pt and NiO/TiO2/Pt catalysts, reverse spillover effects are also confirmed. We believe that an in-depth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.

28 citations


Journal ArticleDOI
TL;DR: In this paper , the reverse spillover effect of NiO/Al2O3/Pt catalysts in hydrogen generation was investigated. But the contribution of reverse spillovers to hydrogen generation reactions is still controversial.
Abstract: The contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/Al2O3/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/Al2O3/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of Al2O3 nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H2 generation rates for NiO/Al2O3/Pt. For the CoOx/Al2O3/Pt and NiO/TiO2/Pt catalysts, reverse spillover effects are also confirmed. We believe that an in-depth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.

25 citations


Journal ArticleDOI
TL;DR: In this paper , the authors exploited density functional theory (DFT) as well as fast simulations using the universal potential/forces generated from the newly developed sparse Gaussian process regression (SGPR) machine learning (ML) method, the very complicated/complex structures, X-ray absorption near-edge structure (XANES) spectra, redox phenomena, and Li diffusion of these battery materials depending on charging/discharging processes.
Abstract: The anion redox reaction in high‐energy‐density cathode materials such as Li‐excess layered oxides suffers from voltage/capacity fadings due to irreversible structural instability. Here, exploiting density functional theory (DFT) as well as fast simulations using the universal potential/forces generated from the newly developed sparse Gaussian process regression (SGPR) machine learning (ML) method, the very complicated/complex structures, X‐ray absorption near‐edge‐structure (XANES) spectra, redox phenomena, and Li diffusion of these battery materials depending on charging/discharging processes is investigated. It is found that voltage/capacity fadings are strongly suppressed in 4d‐element‐containing cathodes by Al‐doping. The suppressed fadings are discussed in view of the structural and electronic changes depending on charged/discharged states which are reflected in their extended X‐ray absorption fine structure and XANES spectra. According to crystal orbital Hamilton populations (COHP) and Bader charge analyses of Li1.22Ru0.61Ni0.11Al0.06O2 (Al‐LRNO), the Al‐doping helps in forming Ni–Al bonding and hence strengthens the bonding‐orbital characteristics in Al–O bonds. This strengthened Al–O bonding hinders oxygen oxidation and thus enhances structural stability, diminishing safety concerns. The Al‐doping driven suppression of capacity fading and voltage decay is expected to help in designing stable reversible layered cathode materials.

21 citations


Journal ArticleDOI
TL;DR: In this paper, high-energy resolution fluorescence-detected X-ray absorption spectroscopy was used to precisely identify the dynamic structural transformation of well-defined active sites of a representative model copper(II) phthalocyanine catalyst which is of guiding significance in studying single-atom catalysis system.

20 citations


Journal ArticleDOI
TL;DR: In this paper , mixed ceria-praseodymia supported Au clusters for the water gas shift reaction (WGSR) were employed to tune catalytic activity, beneficial for bifunctional catalysis by reducible oxide supported metal nanoparticles.
Abstract: Modifying and controlling sites at the metal/oxide interface is an effective way of tuning catalytic activity, beneficial for bifunctional catalysis by reducible oxide supported metal nanoparticles. We employed mixed ceria-praseodymia supported Au clusters for the water gas shift reaction (WGSR). Varying the Ce: Pr ratio (4:1, 2:1, 1:4) not only allows to control the number of oxygen vacancies but, even more important, their local coordination, with asymmetrically coordinated O# being most active for water activation. These effects have been examined by X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, temperature programmed desorption/reduction (TPD/TPR), and density functional theory (DFT). Using the WGSR performance of Au/CeOx as reference, Au/Ce4Pr1Ox was identified to exhibit the highest activity, with a CO conversion of 75% at 300°, which is about 5-times that of Au/CeOx. Au/Ce4Pr1Ox also showed excellent stability, with the conversion still being 70% after 50 h time-on-stream at 300 °. Although a higher Pr content leads to more O vacancies, the catalytic activity showed a “volcano behavior”. Based on DFT, this was rationalized via the formation energy of oxygen vacancies, the binding energy of water, and the asymmetry of the O# site. The presented route of creating active vacancy sites should also be relevant for other heterogeneous catalytic systems.

17 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the coprecipitation of heavy metals (HMs) with Fe(III) in the presence of dissolved organic matter (DOMs) under different Fe/C molar ratios, pHs, and ionic strengths.
Abstract: The coprecipitation of heavy metals (HMs) with Fe(III) in the presence of dissolved organic matter (DOM) is a crucial process to control the mobility of HMs in the environment, but its underlying immobilization mechanisms are unclear. In this study, Cr(III) immobilization by coprecipitation with Fe(III) in the presence of straw-derived DOMs under different Fe/C molar ratios, pHs, and ionic strengths was investigated using scanning transmission X-ray microscopy (STXM) and ptychography and X-ray absorption near-edge structure (XANES) spectroscopy. The results showed that Cr(III) retention was enhanced in the presence of DOM, a maximum of which was achieved at an Fe/C molar ratio of 0.5. The increase of pH and ionic strength could also promote Cr(III) immobilization. Cr K-edge XANES results indicated that Fe (oxy)hydroxide fractions, instead of organics, provided the predominant binding sites for Cr(III), which was directly confirmed by high spatial resolution STXM-ptychography analysis at the sub-micron- and nanoscales. Moreover, organics could indirectly facilitate Cr immobilization by improving the aggregation and deposition of coprecipitate particles through DOM bridging or electrostatic interactions. Additionally, C K-edge XANES analysis further indicated that the carboxylic groups of DOM were complexed with Fe (oxy)hydroxides, which probably contributed to DOM bridging. This study provides a new insight into Cr(III) immobilization mechanisms in its coprecipitation with Fe(III) and DOM, which could have important implications on the management of Cr(III)-enriched soils, particularly with crop straw returning.

17 citations


Journal ArticleDOI
TL;DR: In this paper , high-energy resolution fluorescence-detected X-ray absorption spectroscopy was used to precisely identify the dynamic structural transformation of well-defined active sites of a representative model copper(II) phthalocyanine catalyst which is of guiding significance in studying single-atom catalysis system.

17 citations


Journal ArticleDOI
TL;DR: In this article, mixed ceria-praseodymia supported Au clusters for the water gas shift reaction (WGSR) were employed for tuning catalytic activity, beneficial for bifunctional catalysis by reducible oxide supported metal nanoparticles.
Abstract: Modifying and controlling sites at the metal/oxide interface is an effective way of tuning catalytic activity, beneficial for bifunctional catalysis by reducible oxide supported metal nanoparticles. We employed mixed ceria-praseodymia supported Au clusters for the water gas shift reaction (WGSR). Varying the Ce: Pr ratio (4:1, 2:1, 1:4) not only allows to control the number of oxygen vacancies but, even more important, their local coordination, with asymmetrically coordinated O# being most active for water activation. These effects have been examined by X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, temperature programmed desorption/reduction (TPD/TPR), and density functional theory (DFT). Using the WGSR performance of Au/CeOx as reference, Au/Ce4Pr1Ox was identified to exhibit the highest activity, with a CO conversion of 75% at 300°, which is about 5-times that of Au/CeOx. Au/Ce4Pr1Ox also showed excellent stability, with the conversion still being 70% after 50 h time-on-stream at 300 °. Although a higher Pr content leads to more O vacancies, the catalytic activity showed a “volcano behavior”. Based on DFT, this was rationalized via the formation energy of oxygen vacancies, the binding energy of water, and the asymmetry of the O# site. The presented route of creating active vacancy sites should also be relevant for other heterogeneous catalytic systems.

17 citations


Journal ArticleDOI
TL;DR: In this paper , a novel electrocatalyst of S/N co-coordinated Ni single-atom (denoted as Ni-SNC) was synthesized by calcining SO42-doped Zn/Ni ZIF for electrocatalytic CO2 reduction.

Journal ArticleDOI
TL;DR: In this paper, two different types of Pt/CeO2 catalyst were fabricated via surfactant-assisted strategy and treated in different annealing atmospheres, which was applied to carbon monoxide (CO) and toluene (C7H8) oxidation, respectively.

Journal ArticleDOI
TL;DR: In this article , a composite material (labeled as Co-CMP-MWNTs) consisting of a CMP containing Co single-atom catalysts (Co SACs) and being coaxially grafted to multi-walled carbon nanotubes (MWNT) is presented.

Journal ArticleDOI
TL;DR: In this paper , two different types of Pt/CeO2 catalyst were fabricated via surfactant-assisted strategy and treated in different annealing atmospheres, which was applied to carbon monoxide (CO) and toluene (C7H8) oxidation, respectively.

Journal ArticleDOI
TL;DR: In this paper , the surface terminals (O, OH, F, and Cl) of transition metal carbide materials, particularly V2CTx and Ti3C2Tx, were identified and quantified.

Journal ArticleDOI
TL;DR: In this article , a single-atom catalysts (FeSA) was used for the degradation of P-nitrophenol (PNP) degradation with high total organic carbon (TOC) removal rate and high turnover frequency (TOF).

Journal ArticleDOI
TL;DR: In this paper , a hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene production efficiency in the electrocatalytic CO2 reduction reaction (eCO2RR).
Abstract: A hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene (C2H4) production efficiency in the electrocatalytic CO2 reduction reaction (eCO2RR). The single-atom Ni anchored on high-surface-area ordered mesoporous carbon enables high-rate and selective conversion of CO2 to CO in a wide potential range, which complements the subsequent CO enrichment on Cu nanowires (NWs) for the C-C coupling to C2H4. In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) confirms the substantially improved CO enrichment on Cu, once the incorporation of single-atom Ni occurs. Also, in situ X-ray absorption near-edge structure (XANES) demonstrates the structural stability of the hybrid catalyst during eCO2RR. By modulating hybrid compositions, the optimized catalyst shows 66% Faradaic efficiency (FE) in an alkaline flow cell with over 100 mA·cm-2 at -0.5 V versus reversible hydrogen electrode, leading to a five-order enhancement in C2H4 selectivity compared with single-component Cu NWs.

Journal ArticleDOI
14 Mar 2022-JACS Au
TL;DR: In this paper , the authors studied the redox dynamics of active sites in a bilayered 5% V2O5/15% TiO2/SiO2 catalyst during the oxidative dehydrogenation of ethanol.
Abstract: Titania-supported vanadia (VOx/TiO2) catalysts exhibit outstanding catalytic in a number of selective oxidation and reduction processes. In spite of numerous investigations, the nature of redox transformations of vanadium and titanium involved in various catalytic processes remains difficult to detect and correlate to the rate of products formation. In this work, we studied the redox dynamics of active sites in a bilayered 5% V2O5/15% TiO2/SiO2 catalyst (consisting of submonolayer VOx species anchored onto a TiOx monolayer, which in turn is supported on SiO2) during the oxidative dehydrogenation of ethanol. The VOx species in 5% V2O5/15% TiO2/SiO2 show high selectivity to acetaldehyde and an ca. 40 times higher acetaldehyde formation rate in comparison to VOx species supported on SiO2 with a similar density. Operando time-resolved V and Ti K-edge X-ray absorption near-edge spectroscopy, coupled with a transient experimental strategy, quantitatively showed that the formation of acetaldehyde over 5% V2O5/15% TiO2/SiO2 is kinetically coupled to the formation of a V4+ intermediate, while the formation of V3+ is delayed and 10–70 times slower. The low-coordinated nature of various redox states of VOx species (V5+, V4+, and V3+) in the 5% V2O5/15% TiO2/SiO2 catalyst is confirmed using the extensive database of V K-edge XANES spectra of standards and specially synthesized molecular crystals. Much weaker redox activity of the Ti4+/Ti3+ couple was also detected; however, it was found to not be kinetically coupled to the rate-determining step of ethanol oxidation. Thus, the promoter effect of TiOx is rather complex. TiOx species might be involved in a fast electron transport between VOx species and might affect the electronic structure of VOx, thereby promoting their reducibility. This study demonstrates the high potential of element-specific operando X-ray absorption spectroscopy for uncovering complex catalytic mechanisms involving the redox kinetics of various metal oxides.

Journal ArticleDOI
08 Jul 2022
TL;DR: In this paper , the authors used TEM and in situ XANES/EXAFS to analyze the CO2 activation and temperature-programmed techniques combined with MS-DRIFTS.
Abstract: Dry reforming of methane (DRM) is a promising way to convert methane and carbon dioxide into H2 and CO (syngas). CeO2 nanorods, nanocubes, and nanospheres were decorated with 1-4 wt % Ni. The materials were structurally characterized using TEM and in situ XANES/EXAFS. The CO2 activation was analyzed by DFT and temperature-programmed techniques combined with MS-DRIFTS. Synthesized CeO2 morphologies expose {111} and {100} terminating facets, varying the strength of the CO2 interaction and redox properties, which influence the CO2 activation. Temperature-programmed CO2 DRIFTS analysis revealed that under hydrogen-lean conditions mono- and bidentate carbonates are hydrogenated to formate intermediates, which decompose to H2O and CO. In excess hydrogen, methane is the preferred reaction product. The CeO2 cubes favor the formation of a polydentate carbonate species, which is an inert spectator during DRM at 500 °C. Polydentate covers a considerable fraction of ceria's surface, resulting in less-abundant surface sites for CO2 dissociation.

Journal ArticleDOI
TL;DR: In this article , the adsorption mechanism of materials prepared from hemp shives as co-products of the hemp industry, namely, sodium carbonate-activated (SHI-C) and polycarboxylic agent-grafted (ShI-BTCA), was revealed by different microscopic and spectroscopic techniques.
Abstract: Hemp-based materials have been recently proposed as adsorbents for metals present in aqueous solutions using adsorption-oriented processes. This study aims to reveal the adsorption mechanism of materials prepared from hemp shives as co-products of the hemp industry, namely sodium carbonate-activated (SHI-C) and polycarboxylic agent-grafted (SHI-BTCA) hemp shives. The interactions between copper and two hemp-based materials were characterized by different microscopic and spectroscopic techniques such as energy-disperse X-ray (EDX) spectroscopy, computed nano-tomography (nano-CT), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray absorption near-edge structure (XANES) spectroscopy. The results showed remarkable different mechanisms for copper adsorption onto the SHI-C and SHI-BTCA hemp shives. Namely, copper surface adsorption and diffusion in the structure of the SHI-C material were predominant, whereas the adsorption of copper onto SHI-BTCA was due to a chemisorption phenomenon and ion-exchange involving the adsorbent carboxylate groups. The combination of the abovementioned complementary microscopic and spectroscopic techniques allowed us to characterize and distinguish the type of interactions involved in the liquid-solid adsorption phenomena.

Journal ArticleDOI
TL;DR: In this article , the electronic structure modifications of triphenylamine (TPA), a well-known electron donor molecule widely used in photovoltaics and optoelectronics, upon deposition on Au(111) at a monolayer coverage were analyzed.
Abstract: In this article, we analyze the electronic structure modifications of triphenylamine (TPA), a well-known electron donor molecule widely used in photovoltaics and optoelectronics, upon deposition on Au(111) at a monolayer coverage. A detailed study was carried out by synchrotron radiation-based photoelectron spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, scanning tunneling microscopy (STM), and ab initio calculations. We detect a new feature in the pre-edge energy region of the N K-edge NEXAFS spectrum that extends over 3 eV, which we assign to transitions involving new electronic states. According to our calculations, upon adsorption, a number of new unoccupied electronic states fill the energy region between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the free TPA molecule and give rise to the new feature in the pre-edge region of the NEXAFS spectrum. This finding highlights the occurrence of a considerable modification of the electronic structure of TPA. The appearance of new states in the HOMO–LUMO gap of TPA when adsorbed on Au(111) has crucial implications for the design of molecular nanoelectronic devices based on similar donor systems.

Journal ArticleDOI
TL;DR: In this paper , a single-atom catalysts (SAC) was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface, and different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co X-ray absorption near edge structure (XANES) data analysis.
Abstract: "Single-atom" catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment, thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.

Journal ArticleDOI
TL;DR: In this paper , Nd3+-Er3+co-doped lithium fluorophosphate (NdEr) glasses with broad-band emission were made by the traditional melt quenching technique.

Journal ArticleDOI
TL;DR: In this article , surface-oxygen-rich carbon-nanorod-supported bismuth nanoparticles (SOR Bi@C NPs) were used for an efficient CO2 reduction reaction toward formate.
Abstract: The electrochemical CO2 reduction reaction (CO2RR) is a promising strategy to alleviate excessive CO2 levels in the atmosphere and produce value-added feedstocks and fuels. However, the synthesis of high-efficiency and robust electrocatalysts remains a great challenge. This work reports the green preparation of surface-oxygen-rich carbon-nanorod-supported bismuth nanoparticles (SOR Bi@C NPs) for an efficient CO2RR toward formate. The resultant SOR Bi@C NPs catalyst displays a Faradaic efficiency of more than 91% for formate generation over a wide potential range of 440 mV. Ex situ XPS and XANES and in situ Raman spectroscopy demonstrate that the Bi-O/Bi (110) structure in the pristine SOR Bi@C NPs can remain stable during the CO2RR process. DFT calculations reveal that the Bi-O/Bi (110) structure can facilitate the formation of the *OCHO intermediate. This work provides an approach to the development of high-efficiency Bi-based catalysts for the CO2RR and offers a unique insight into the exploration of advanced electrocatalysts.

Journal ArticleDOI
TL;DR: In this article , a lattice-confined single-atom catalysts (SACs) for ambient nitrogen reduction reaction (NRR) was constructed by using mesoporous TiO 2 lattice, which achieved a favorable NH 3 yield rate of 18.3 μg h -1 mg cat.
Abstract: Mimicking natural nitrogenase to create highly efficient single atom catalysts (SACs) for ambient N 2 fixation is highly desired, but still challenging. Herein, S coordinated Fe SACs on mesoporous TiO 2 have been constructed by a lattice-confined strategy. The extended X-ray absorption fine structure and X-ray photoelectron spectroscopy spectra demonstrate that Fe atoms are anchored in TiO 2 lattice via the FeS 2 O 2 coordination configuration. Theoretical calculations reveal that FeS 2 O 2 sites are the active centers for electrocatalytic nitrogen reduction reaction (NRR). Moreover, the finite element analysis shows that confinement of opened and ordered mesopores can facilitate the mass transport and offer an enlarged active surface area for NRR. As a result, this catalyst delivers a favorable NH 3 yield rate of 18.3 μg h -1 mg cat. -1 with a high faradic efficiency of 17.3% at -0.20 V versus reversible hydrogen electrode. Most importantly, this lattice-confined strategy is universal and can also be applied to Ni 1 S x @TiO 2 , Co 1 S x @TiO 2 , Mo 1 S x @TiO 2 , and Cu 1 S x @TiO 2 SACs. Our study provides new hints for design and biomimetic synthesis of highly efficient NRR electrocatalysts.

Journal ArticleDOI
TL;DR: XANESNET as discussed by the authors predicts the spectral intensities using only information about the local coordination geometry of the transition metal complexes encoded in a feature vector of weighted atom-centered symmetry functions.
Abstract: The affordable, accurate, and generalizable prediction of spectroscopic observables plays a key role in the analysis of increasingly complex experiments. In this article, we develop and deploy a deep neural network-XANESNET-for predicting the lineshape of first-row transition metal K-edge x-ray absorption near-edge structure (XANES) spectra. XANESNET predicts the spectral intensities using only information about the local coordination geometry of the transition metal complexes encoded in a feature vector of weighted atom-centered symmetry functions. We address in detail the calibration of the feature vector for the particularities of the problem at hand, and we explore the individual feature importance to reveal the physical insight that XANESNET obtains at the Fe K-edge. XANESNET relies on only a few judiciously selected features-radial information on the first and second coordination shells suffices along with angular information sufficient to separate satisfactorily key coordination geometries. The feature importance is found to reflect the XANES spectral window under consideration and is consistent with the expected underlying physics. We subsequently apply XANESNET at nine first-row transition metal (Ti-Zn) K-edges. It can be optimized in as little as a minute, predicts instantaneously, and provides K-edge XANES spectra with an average accuracy of ∼±2%-4% in which the positions of prominent peaks are matched with a >90% hit rate to sub-eV (∼0.8 eV) error.

Journal ArticleDOI
TL;DR: In this paper , a relativistic multiconfiguration wave function theory (WFT) was used to calculate the X-ray absorption near edge structure (XANES) in actinide IV hexachlorides.
Abstract: Chlorine K-edge X-ray absorption near edge structure (XANES) in actinideIV hexachlorides, [AnCl6]2− (An = Th–Pu), is calculated with relativistic multiconfiguration wavefunction theory (WFT). Of particular focus is a 3-peak feature emerging from U toward Pu, and its assignment in terms of donation bonding to the An 5f vs. 6d shells. With or without spin–orbit coupling, the calculated and previously measured XANES spectra are in excellent agreement with respect to relative peak positions, relative peak intensities, and peak assignments. Metal–ligand bonding analyses from WFT and Kohn–Sham theory (KST) predict comparable An 5f and 6d covalency from U to Np and Pu. Although some frontier molecular orbitals in the KST calculations display increasing An 5f–Cl 3p mixing from Th to Pu, because of energetic stabilization of 5f relative to the Cl 3p combinations of the matching symmetry, increasing hybridization is neither seen in the WFT natural orbitals, nor is it reflected in the calculated bond orders. The appearance of the pre-edge peaks from U to Pu and their relative intensities are rationalized simply by the energetic separation of transitions to 6d t2gversus transitions to weakly-bonded and strongly stabilized a2u, t2u and t1u orbitals with 5f character. The study highlights potential pitfalls when interpreting XANES spectra based on ground state Kohn–Sham molecular orbitals.

Journal ArticleDOI
TL;DR: In this article , the effects of catalytic hydrothermal pretreatment on animal manure followed by the addition of hydrochar on the nutrients recovery have not yet been investigated using a combination of chemical, microscopic, and spectroscopic techniques.

Journal ArticleDOI
TL;DR: In this article , a novel NP extraction method and scanning transmission X-ray spectro-microscopy (STXM) in combination with NEXAFS was used to image and identify individual NP in environmental and food matrices.

Journal ArticleDOI
TL;DR: In this article , a mechanistic study of single-site catalysts using operando, synchrotron-X-ray absorption spectroscopy, and X-ray diffractometry is presented.
Abstract: Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation is poorly understood. In this work, we present a mechanistic study of platinum SSCs using operando, synchrotron-X-ray absorption spectroscopy. We synthesize an atomically dispersed platinum complex with aniline and chloride ligands onto graphene and characterize it with ex-situ electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure spectroscopy (XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS). Then, by operando EXAFS and XANES, we show that as a negatively biased potential is applied, the Pt-N bonds break first followed by the Pt-Cl bonds. The platinum is reduced from platinum(II) to metallic platinum(0) by the onset of the hydrogen-evolution reaction at 0 V. Furthermore, we observe an increase in Pt-Pt bonding, indicating the formation of platinum agglomerates. Together, these results indicate that while aniline is used to prepare platinum SSCs, the single-site complexes are decomposed and platinum agglomerates at operating potentials. This work is an important contribution to the understanding of the evolution of bonding environment in SSCs and provides some molecular insights into how platinum agglomeration causes the deactivation of SSCs over time.