scispace - formally typeset
Search or ask a question

Showing papers on "Xanthine published in 2000"


Journal ArticleDOI
TL;DR: The crystal structure of the dimeric bovine milk XDH is presented and the major changes that occur on the proteolytic transformation of XDH to the XO form are described, reflecting the switch of substrate specificity observed for the two forms of this enzyme.
Abstract: Mammalian xanthine oxidoreductases, which catalyze the last two steps in the formation of urate, are synthesized as the dehydrogenase form xanthine dehydrogenase (XDH) but can be readily converted to the oxidase form xanthine oxidase (XO) by oxidation of sulfhydryl residues or by proteolysis Here, we present the crystal structure of the dimeric (Mr, 290,000) bovine milk XDH at 21-A resolution and XO at 25-A resolution and describe the major changes that occur on the proteolytic transformation of XDH to the XO form Each molecule is composed of an N-terminal 20-kDa domain containing two iron sulfur centers, a central 40-kDa flavin adenine dinucleotide domain, and a C-terminal 85-kDa molybdopterin-binding domain with the four redox centers aligned in an almost linear fashion Cleavage of surface-exposed loops of XDH causes major structural rearrangement of another loop close to the flavin ring (Gln 423—Lys 433) This movement partially blocks access of the NAD substrate to the flavin adenine dinucleotide cofactor and changes the electrostatic environment of the active site, reflecting the switch of substrate specificity observed for the two forms of this enzyme

621 citations


Journal ArticleDOI
TL;DR: Xanthine oxidase was shown to catalyze the reduction of nitrite to nitric oxide (NO) in the presence of either NADH or xanthine as reducing substrate, and it is proposed that XO-derived NO fulfills a bactericidal role in the digestive tract.

399 citations


Journal ArticleDOI
TL;DR: The cell-impermeable, sulfonated tetrazolium salt, WST-1, which exhibits very low background absorbance and is efficiently reduced by superoxide to a stable water-soluble formazan with high molar absorptivity is used to assess human neutrophil dysfunction and to compare anti-inflammatory activity.

308 citations


Journal ArticleDOI
TL;DR: The study demonstrated that the effects for these medicinal plants used for the gout treatment were based, at least in part, on the xanthine oxidase inhibitory action.

239 citations


Journal ArticleDOI
TL;DR: Evidence is provided that xanthine oxidase is responsible for the free radical production and tissue damage during exhaustive exercise and that mitochondria play a minor role as a source of free radicals during exhaustive physical exercise.
Abstract: Exhaustive exercise generates free radicals. However, the source of this oxidative damage remains controversial. The aim of this paper was to study further the mechanism of exercise-induced production of free radicals. Testing the hypothesis that xanthine oxidase contributes to the production of free radicals during exercise, we found not only that exercise caused an increase in blood xanthine oxidase activity in rats but also that inhibiting xanthine oxidase with allopurinol prevented exercise-induced oxidation of glutathione in both rats and in humans. Furthermore, inhibiting xanthine oxidase prevented the increases in the plasma activity of cytosolic enzymes (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase) seen after exhaustive exercise. Our results provide evidence that xanthine oxidase is responsible for the free radical production and tissue damage during exhaustive exercise. These findings also suggest that mitochondria play a minor role as a source of free radicals during exhaustive physical exercise.

209 citations


Journal ArticleDOI
TL;DR: Results showed that the hydrophilic and lipophilic fractions of all tomato products were able to affect model reactions, whatever reactive oxygen species and catalysts were used to drive oxidation.
Abstract: The antioxidant content and activity of commercial tomato products differing in variety and processing were studied. Two procedures for extracting hydrophilic and lipophilic antioxidants, namely, two-step 0.1 M phosphate buffer (pH 3.0 and 7.4) extraction and tetrahydrofuran extraction followed by petroleum ether fractionation, were developed. Carotenoids (lycopene, β-carotene, and lutein) and ascorbic acid were analyzed by HPLC with spectrophotometric and electrochemical detectors, respectively. Total phenolics were determined by using the Folin−Ciocalteu reagent. The antioxidant activity was studied by the following three model systems: (a) the xanthine oxidase (XOD)/xanthine system, which generates superoxide radical and hydrogen peroxide; (b) the myeloperoxidase (MPO)/NaCl/H2O2 system, which produces hypochloric acid; and (c) the linoleic acid/CuSO4 system, which promotes lipid peroxidation. Results showed that the hydrophilic and lipophilic fractions of all tomato products were able to affect model ...

136 citations


Journal ArticleDOI
TL;DR: Xanthine/xanthine oxidase opposed the bacterial lipopolysaccharide- and tumor necrosis factor-alpha-mediated inhibition of CCR5 and CXCR4 mRNA expression and increased both the C CR5 surface expression and the cell migration in response to macrophage inflammatory protein-1beta, suggesting that the redox status of cells is a crucial determinant in the regulation of the chemokine system.
Abstract: Cytokines and reactive oxygen intermediates (ROI) are frequent companions at sites of acute inflammation. We have shown previously that in human monocytes, bacterial lipopolysaccharide, IL-1, and tumor necrosis factor-alpha induce a rapid down-regulation of the monocyte chemotactic protein-1 receptor CCR2 (CC chemokine receptor-2). These stimuli also induce production of ROI. In this paper, we investigate the influence of antioxidants and/or ROI on chemokine-receptor expression. In human monocytes, the antioxidant pyrrolidine dithiocarbamate (PDTC) rapidly inhibited CCR2 (95-100% of inhibition) and CCR5 (77-100% of inhibition) mRNA expression by strongly decreasing transcript stability. CCR2 half-life was decreased from 1.5 h to 45 min; CCR5 half-life was decreased from 2 h to 70 min. This inhibitory activity also included CXCR4 (CXC chemokine receptor-4) but not CXCR2 receptor and, although to a lesser extent, was shared by the antioxidants N-acetyl-l-cysteine and 2-mercaptoethanol. In contrast, the ROI-generating system xanthine/xanthine oxidase increased CCR5 and CXCR4 mRNA expression and counteracted the inhibitory effect of PDTC. Accordingly, H(2)O(2) and the glutathione-depleting drug buthionine sulfoximine increased to different extents CCR2, CCR5, and CXCR4 mRNA expression. The PDTC-mediated inhibition of CCR5 and CXCR4 mRNA expression was associated with decreased chemotactic responsiveness (>90% inhibition) and with a marked inhibition of surface-receptor expression. In contrast, xanthine/xanthine oxidase opposed the bacterial lipopolysaccharide- and tumor necrosis factor-alpha-mediated inhibition of CCR5 and CXCR4 mRNA expression and increased both the CCR5 surface expression and the cell migration (3-fold) in response to macrophage inflammatory protein-1beta. These results suggest that the redox status of cells is a crucial determinant in the regulation of the chemokine system.

119 citations


Journal ArticleDOI
TL;DR: Significant increases in the levels of xanthine and hypoxanthine, putative deamination products of guanine and adenine were observed in DNA from nitrite-treated cells but no rise in any base oxidation products such as 8-hydroxyguanine, which suggests that exposure of cells to nitrite leads to intracellular generation of "reactive nitrogen species" capable of deaminating purines in DNA.

117 citations


Journal ArticleDOI
TL;DR: It is indicated that preconditioning by moderate ROS-stimulation protects cultured neurons against different damaging agents and prevents against the subsequent massive oxygen radical formation.

115 citations


Journal ArticleDOI
TL;DR: It is demonstrated that an increase in hippocampal adenosine release and metabolism is associated with seizure activity and support the hypothesis that the increasedadenosine levels may attenuate hippocampal seizure activity, possibly by terminating ongoing seizures and altering the pattern of subsequent seizures.

110 citations


Journal ArticleDOI
TL;DR: HPLC-ESI MS/MS of urine allows rapid screening for disorders of purine and pyrimidine metabolism and the filter paper strips offer the advantage of easy collection, transport, and storage of the urine samples.
Abstract: Background: A rapid and specific screening method for patients at risk of inherited disorders of purine and pyrimidine metabolism is desirable because symptoms are varied and nonspecific. The aim of this study was to develop a rapid and specific method for screening with use of liquid urine samples or urine-soaked filter paper strips. Methods: Reverse-phase HPLC was combined with electrospray ionization (ESI), tandem mass spectrometry (MS/MS), and detection performed by multiple reaction monitoring. Transitions and instrument settings were established for 17 purines or pyrimidines. Stable-isotope-labeled reference compounds were used as internal standards when available. Results: Total analysis time of this method was 15 min, approximately one-third that of conventional HPLC with ultraviolet detection. Recoveries were 96–107% in urine with added analyte, with two exceptions (hypoxanthine, 64%; xanthine, 79%), and 89–110% in urine-soaked filter paper strips, with three exceptions (hypoxanthine, 65%; xanthine, 77%; 5-hydroxymethyluracil, 80%). The expected abnormalities were easily found in samples from patients with purine nucleoside phosphorylase deficiency, ornithine transcarbamylase deficiency, molybdenum cofactor deficiency, adenylosuccinase deficiency, or dihydropyrimidine dehydrogenase deficiency. Conclusions: HPLC-ESI MS/MS of urine allows rapid screening for disorders of purine and pyrimidine metabolism. The filter paper strips offer the advantage of easy collection, transport, and storage of the urine samples.

Journal ArticleDOI
TL;DR: H(2)O(2), but not O(2)(-).
Abstract: The role of H(2)O(2) and protein thiol oxidation in oxidative stress-induced epithelial paracellular permeability was investigated in Caco-2 cell monolayers. Treatment with a H(2)O(2) generating system (xanthine oxidase + xanthine) or H(2)O(2) (20 microM) increased the paracellular permeability. Xanthine oxidase-induced permeability was potentiated by superoxide dismutase and prevented by catalase. H(2)O(2)-induced permeability was prevented by ferrous sulfate and potentiated by deferoxamine and 1,10-phenanthroline. GSH, N-acetyl-L-cysteine, dithiothreitol, mercaptosuccinate, and diethylmaleate inhibited H(2)O(2)-induced permeability, but it was potentiated by 1,3-bis(2-chloroethyl)-1-nitrosourea. H(2)O(2) reduced cellular GSH and protein thiols and increased GSSG. H(2)O(2)-mediated reduction of GSH-to-GSSG ratio was prevented by ferrous sulfate, GSH, N-acetyl-L-cysteine, diethylmaleate, and mercaptosuccinate and potentiated by 1,10-phenanthroline and 1, 3-bis(2-chloroethyl)-1-nitrosourea. Incubation of soluble fraction of cells with GSSG reduced protein tyrosine phosphatase (PTPase) activity, which was prevented by coincubation with GSH. PTPase activity was also lower in H(2)O(2)-treated cells. This study indicates that H(2)O(2), but not O(2)(-). or.OH, increases paracellular permeability of Caco-2 cell monolayer by a mechanism that involves oxidation of GSH and inhibition of PTPases.

Journal ArticleDOI
TL;DR: Exposure to a low dose of caffeine during gestation and postnatal life had only minor effects on development of adenosine A1 and A2A receptors and GABAA receptors in the rat brain.
Abstract: Maternal caffeine intake has been suggested to influence the offspring. We have studied the effects of maternal caffeine intake on adenosine and GABA receptors, targets for caffeine, during development of the rat brain. Caffeine (0.3 g/L) was added to the drinking water of rat dams during pregnancy and early postnatal life. Adenosine A1 and A2A and GABAA receptor development was studied using receptor autoradiography and in situ hybridization. Pups were examined on embryonic d 14 (E14), E18, E21, 2 h after birth (P2h), P24h, postnatal d 3 (P3), P7, P14, and P21. Adenosine A, receptor mRNA was detected at E14 and receptors at E18. A1 mRNA levels increased from the level reached at E18 between P3 and P14 (maximally a doubling), whereas A, receptors, studied by [3H]-1,3-dipropyl-8-cyclopentyl xanthine binding, increased later and to a much larger extent (about 10-fold) postnatally. Caffeine treatment had no significant effect on adenosine A1 receptors or on A1 receptor mRNA. A2A mRNA had reached adult levels by E18, whereas receptor levels were low or undetectable before birth and increased dramatically until P14. Caffeine did not influence A2A receptors or A2A receptor mRNA at any stage during development. [3H]-flunitrazepam binding, representing GABAA receptors, showed large regional variations during ontogeny, but there were no clear differences between the caffeine-exposed and the nonexposed pups. Thus, exposure to a low dose of caffeine during gestation and postnatal life had only minor effects on development of adenosine A, and A2A receptors and GABAA receptors in the rat brain.

Journal ArticleDOI
TL;DR: This HPLC method for the determination of allantoin, uric acid, hypoxanthine and xanthine (purine metabolites) in ovine urine without the disadvantages inherent in derivatization is described and is suitable for routine quantification of purine metabolites in a large number of urine samples.

Journal ArticleDOI
TL;DR: A flow cytometry technique to evaluate the antioxidative properties of molecules on living cells, using a stable murine-murine hybridoma (Mark 3) cell line routinely cultured, found the selenated molecule 18 was found to be 10 times more active than Ebselen but 10 000 times less active than vitamin E.
Abstract: We present a flow cytometry technique to evaluate the antioxidative properties of molecules on living cells, using a stable murine−murine hybridoma (Mark 3) cell line routinely cultured. Using this technique, intracellular superoxide anions and peroxides were evaluated with dihydrorhodamine (DHR-123) and dichlorofluorescein diacetate (DCFH-DA), respectively. When cells were first incubated for 10 min with either H2O2 or the xanthine (X)/xanthine oxidase (XO) system, this flow cytometric technique was capable of evaluating the oxidative stress on cells. Twenty-one new analogues of ellipticine were synthesized and tested for their antioxidative properties compared to vitamin E and Ebselen used as references. A good statistical reflection of the antioxidative activities of these molecules was achieved by analyzing 35 000 cells in each experiment. Among them, the selenated molecule 18 was found to be 10 times more active than Ebselen but 10 000 times less active than vitamin E. Moreover, eight compounds showe...

Journal ArticleDOI
TL;DR: Ozone would confer protection against the hepatic ischemia reperfusion injury by the accumulation of adenosine that in turns benefits the liver and by blocking the xanthine/xanthine oxidase pathway for reactive oxygen species generation.
Abstract: This study investigates whether ozone could confer protection from hepatic ischemia reperfusion by modifying the accumulation of adenosine and xanthine during ischemia. A significant increase in both adenosine and xanthine accumulation was observed as a consequence of ATP degradation during hepatic ischemia. Adenosine exerts a protective effect on hepatic ischemia reperfusion injury since the elimination of endogenous adenosine accumulation with adenosine deaminase increased the hepatic injury associated with this process. On the other hand, the high xanthine levels observed after ischemia could exert deleterious effects during reperfusion due to reactive oxygen species generation from xanthine oxidase. The administration of allopurinol, an inhibitor of xanthine oxidase, attenuated the increase in reactive oxygen species and transaminase levels observed after hepatic reperfusion. Ozone treatment in liver maintained adenosine levels similar to those found after ischemia but led to a marked reduction in xanthine accumulation. In order to evaluate the role of both adenosine and xanthine, we tried to modify the protection confered by ozone, by modifying the concentrations of adenosine and xanthine. The metabolization of endogenous adenosine after ischemia abolished the protective effect conferred by ozone. When xanthine was administered previous to ozone treatment, the protection conferred by adenosine disappeared, showing both postischemic reactive oxygen species and transaminase levels similar to those found after hepatic ischemia reperfusion. Ozone would confer protection against the hepatic ischemia reperfusion injury by the accumulation of adenosine that in turns benefits the liver and by blocking the xanthine/xanthine oxidase pathway for reactive oxygen species generation.

Journal ArticleDOI
TL;DR: In this article, a CuPtCl 6 /glassy carbon chemically modified electrode was used as an amperometric sensor for xanthine and hypoxanthine with a detection limit of 1×10 −7 ǫM.

Journal ArticleDOI
TL;DR: In this paper, the effect of intestinal preconditioning on the xanthine oxidase system, the relevance of this system in the development of injury, and its relationship with nitric oxide were determined.
Abstract: Previous studies have demonstrated that intestinal preconditioning protects the organ from ischemia reperfusion damage. Xanthine oxidase mediating free radical generation contributes to the development of injury associated to ischemia reperfusion. Thus, any process able to modulate the oxygen free radical generation system could attenuate the injury. Also, it is known that nitric oxide is implicated in the preconditioning response. The aim of this work is to determine: (1) the effect of intestinal preconditioning on the xanthine oxidase system, (2) the relevance of this system in the development of injury, and (3) its relationship with nitric oxide. For this purpose, we have determined the activity of the xanthine dehydrogenase/xanthine oxidase system, the levels of its substrate (xanthine), and end-product (uric acid) and oxidant stress status in rat small intestine subjected to ischemic pre-conditioning. The effects of nitric oxide inhibition have also been evaluated. Results show that the percentage of xanthine dehydrogenase to xanthine oxidase conversion, xanthine, uric acid concentration, lipoperoxides, and reduced glutathione were significantly reduced in preconditioned rats irrespectively of nitric oxide inhibition. In summary, this work shows that oxidative stress in intestinal preconditioning is reduced as consequence of the diminished conversion of xanthine dehydrogenase to xanthine oxidase, and also as a consequence of the reduced availability of xanthine.

Journal ArticleDOI
TL;DR: The decrease in creatine kinase activity during diabetes could be due to the production of reactive oxygen species, since addition of sulfhydryl groups like N-acetylcysteine and dithiothreitol showed a significant reversal effect.
Abstract: The main purpose of this study was to investigate the effect of free radicals and experimental diabetes on cytosolic creatine kinase activity in rat heart, muscle and brain. Hydrogen peroxide decreased creatine kinase activity in a dose dependent manner which was reversed by catalase. Xanthine/xanthine oxidase, which produces superoxide anion, lowered the creatine kinase activity in the same manner whose effect was protected by superoxide dismutase. N-acetylcysteine and dithiothreitol also significantly ameliorated the effect of Xanthine/xanthine oxidase and hydrogen peroxide. Experimental diabetes of twenty-one days (induced by alloxan), also caused a similar decrease in the activity of creatine kinase. This led us to the conclusion that the decrease in creatine kinase activity during diabetes could be due to the production of reactive oxygen species. The free radical effect could be on the sulfhydryl groups of the enzyme at the active sites, since addition of sulfhydryl groups like N-acetylcysteine and dithiothreitol showed a significant reversal effect.

Journal ArticleDOI
TL;DR: It is proposed that XO is involved in the metabolism of organic nitrites to NO in vivo and that the observed inactivation serves to explain the phenomenon of tolerance.

Journal ArticleDOI
TL;DR: In this article, the role of the two iron-sulfur centers in catalysis was investigated by means of X-ray crystal structure and site-directed mutagenesis studies.

Journal ArticleDOI
TL;DR: Results indicate that PBE selectively inhibits xanthine oxidase through binding to the enzyme rather than by the redox activity of PBE, various purified flavonoids, or other complex mixtures of bioflavonoids.
Abstract: Pycnogenol, an extract from French maritime pine bark (PBE), is a complex mixture of bioflavonoids with reported protective effects against disease. PBE is an effective scavenger of reactive oxygen species, and its main constituents are procyanidins of various chain lengths. To find out the biochemical basis of action of PBE on enzyme activity, involvement of its redox activity and direct binding to the enzyme in its subsequent action on enzyme activity have been investigated. PBE dose-dependently inhibited the activities of xanthine oxidase, xanthine dehydrogenase, horseradish peroxidase, and lipoxygenase, but it did not affect the activities of glucose oxidase, ascorbate oxidase, or elastase. To characterize the mechanism of PBE action, studies were focused on xanthine oxidase and glucose oxidase. Under non-denaturing conditions, PBE changed the electrophoretic mobility of xanthine oxidase but not of glucose oxidase. Gel filtration chromatography confirmed higher molecular weight complexes of xanthine o...

Journal ArticleDOI
TL;DR: It is found that a deletion mutation at tyrosine 257 inMCSU is tightly associated with bovine xanthinuria type II, similar to the Drosophila ma-l mutations, which lose activities of molybdoenzymes, XDH, and aldehyde oxidase, although sulfite oxidase activity is preserved.

Journal ArticleDOI
TL;DR: It is concluded that the proteasome is a secondary antioxidative defense system that degrades only nonfunctional ferritin.
Abstract: Ferritin, the major iron storage protein in mammalian cells, was treated with various concentrations of different oxidants: xanthine/xanthine oxidase, Sin-1 (3-morpholinosydnonimine, purchased from Alexis, Grunberg, Germany), DEA-NO (Diethylamine NONOate, purchased from Calblochem-Novabiochem, Schwalbach, Germany), and hydrogen peroxide. The proteolytic susceptibility towards the isolated 20S proteasome of untreated ferritin and oxidized ferritin was measured in parallel with the iron liberated by these oxidants. With increasing hydrogen peroxide, Sin-1, and xanthine oxidase concentrations, the measured proteasomal degradation of ferritin also increased. At higher oxidant concentrations, however, the proteolytic susceptibility began to decrease. The oxidation of ferritin by DEA-NO was accompanied by a lesser increase of proteolytic susceptibility in comparison with the effects of the other oxidants. Addition of DEA-NO to Sin-1 suppressed the increase in proteolytic susceptibility of ferritin, whereas adding xanthine/xanthine oxidase had no additional effect. Iron was liberated readily from ferritin as a result of the oxidation process, although the increase in proteolytic susceptibility was not always correlated to the iron release. In fact, the degradation of oxidatively damaged ferritin was not accompanied by a further increase of free iron. Therefore, we conclude that the proteasome is a secondary antioxidative defense system that degrades only nonfunctional ferritin.

Journal ArticleDOI
TL;DR: The data suggest that various nucleosides may be released from cells exposed to excessive activity and, thus, support several different lines of research concerning the regulatory roles of nucleoside.

Journal ArticleDOI
TL;DR: Kinetic analyses of both enzymes revealed that xanthine is the preferred substrate for XDH and purine and hypoxanthine are preferred by PH, and an extension of the pathway for purine fermentation in the purinolytic clostridia is described.
Abstract: During purification of the selenium-dependent xanthine dehydrogenase (XDH) from Clostridium purinolyticum, another hydroxylase was uncovered that also contained selenium and exhibited similar spectral properties. This enzyme was purified to homogeneity. It uses purine, 2OH-purine, and hypoxanthine as substrates, and based on its substrate specificity, this selenoenzyme is termed purine hydroxylase (PH). The product of hydroxylation of purine by PH is xanthine. A concomitant release of selenium from the enzyme and loss of catalytic activity on treatment with cyanide indicates that selenium is essential for PH activity. Selenium-dependent XDH, also purified from C. purinolyticum, was found to be insensitive to oxygen during purification and to use both potassium ferricyanide and 2,6-dichloroindophenol as electron acceptors. Selenium is required for the xanthine-dependent reduction of 2, 6-dichloroindophenol by XDH. Kinetic analyses of both enzymes revealed that xanthine is the preferred substrate for XDH and purine and hypoxanthine are preferred by PH. This characterization of these selenium-requiring hydroxylases involved in the interconversion of purines describes an extension of the pathway for purine fermentation in the purinolytic clostridia.

Journal ArticleDOI
TL;DR: The theophylline biosensor exhibited good operational and shelf stability when trehalose was used as a stabilizer of the biocatalytic layer and could be selectively eliminated by immersion in alkaline phosphate solution, thus allowing for the construction of a blank electrode for differential measurements.

Journal ArticleDOI
TL;DR: Caffeine remains the xanthine of choice for activation of intracellular calcium-sensitive calcium release channels although millimolar concentrations are required, which can have effects on other aspects of calcium regulation.
Abstract: (1) The methylxanthine caffeine has many pharmacological effects, most of which can be linked to blockade of adenosine receptors, inhibition of phosphodiesterases, and augmentation of calcium-dependent release of calcium from intracellular stores. (2) A variety of xanthines have been developed as potent and/or selective antagonists for adenosine receptors. (3) Several xanthines have been developed that are more potent and more selective inhibitors of cyclic nucleotide phosphodiesterase than caffeine or theophylline. (4) Caffeine remains the xanthine of choice for activation of intracellular calcium-sensitive calcium release channels although millimolar concentrations are required, which can have effects on other aspects of calcium regulation.

Journal ArticleDOI
TL;DR: Experimental and clinical studies have shown that the bronchodilating activities of doxofylline have been demonstrated in clinical trials involving patients with either bronchial asthma or chronic obstructive pulmonary disease, and that the drug is devoid of direct stimulatory effects.
Abstract: SummaryDoxofylline (7-(1,3-dioxalan-2-ylmethyl) theophylline) is a novel xanthine bronchodilator which differs from theophylline in that it contains a dioxalane group in position 7. Similarly to theophylline, its mechanism of action is related to the inhibition of phosphodiesterase activities, but in contrast it appears to have decreased affinities towards adenosine A1 and A2 receptors, which may account for its better safety profile. The bronchodilating activities of doxofylline have been demonstrated in clinical trials involving patients with either bronchial asthma or chronic obstructive pulmonary disease. In contrast to other bronchodilators, experimental and clinical studies have shown that the drug is devoid of direct stimulatory effects. This may be of importance because the arrhythmogenic actions of bronchodilators may have a negative impact on the survival of patients with respiratory diseases.

Journal Article
TL;DR: It is suggested that glyceryl trinitrate may be reduced to NO in vitro by the enzyme XOR in sufficient amounts to inhibit platelet aggregation.
Abstract: Xanthine oxidoreductase (XOR) is a mammalian enzyme that possesses a series of redox centers, which use either NAD+ or molecular oxygen for oxidation of the purines xanthine and hypoxanthine to uric acid. The ability of XOR to act as an NADH oxidase is a less well recognized function of the enzyme, and it is this function that we used to explore the metabolism of glyceryl trinitrate. The antiplatelet effect of nitric oxide (NO) on platelet aggregation was used as a bioassay to assess the bioconversion of glyceryl trinitrate to NO by XOR. The thromboxane mimetic U46619, 2 μM, was used to stimulate platelet aggregation in platelet-rich plasma prepared from healthy drug-free human volunteers. All incubations were carried out at 37°C for 2 min after the addition of U46619. XOR produced a dose-dependent antiaggregant effect when incubated with glyceryl trinitrate (GTN), 220 μM. This did not occur when GTN or XOR was incubated with platelet-rich plasma independently. The antiaggregant effect of XOR plus GTN was dose dependently inhibited by allopurinol, with an IC50 of 100 μM. The addition of superoxide dismutase (SOD), 100 U/ml produced a shift to the left in the antiaggregant dose-response curve for XOR. The IC50 for XOR at 200 U/l without SOD was decreased to 80 U/l with SOD. Oxyhemoglobin, an extracellular NO scavenger, produced a dose-dependent, noncompetitive inhibition of the antiaggregant effect of XOR plus GTN. These findings suggest that GTN may be reduced to NO in vitro by the enzyme XOR in sufficient amounts to inhibit platelet aggregation.