scispace - formally typeset
Search or ask a question
Topic

Xanthine

About: Xanthine is a research topic. Over the lifetime, 4046 publications have been published within this topic receiving 129820 citations. The topic is also known as: Xanthine.


Papers
More filters
Journal ArticleDOI
Sylvia F. Hunter1
TL;DR: Summary 1.0 mg ACTH was injected into rats for 8-10 days and Liver slices from these animals showed a decreased methylation of nicotinamide and an increasedmethylation of guanidoacetic acid.
Abstract: Summary1.0 mg ACTH was injected into rats for 8-10 days. Liver slices from these animals showed a decreased methylation of nicotinamide and an increased methylation of guanidoacetic acid. The methylation of homocysteine was unaffected. Tyrosine formation from phenylalanine was inhibited as was uric acid formation from xanthine. Urea production was normal. Endogenous ketone body production and the oxidation of octanoate was increased.

66 citations

Journal ArticleDOI
01 Jan 1985
TL;DR: It is indicated that lipid peroxidation and Ca2+ can synergistically act to damage biologic membranes and cannot be considered as separate entities in the pathophysiology of CNS trauma.
Abstract: The interactions between lipid peroxidation and calcium in mediating damage to central nervous system membranes have been examined in several in vitro systems. Using isolated rat brain synaptosomes, brain mitochondria, or cultured fetal mouse spinal cord neurons, Ca2+ was found to markedly enhance lipid peroxidation-induced disruption of membrane function. Gamma-aminobutyric acid (GABA) uptake by synaptosomes was inhibited 25% by either lipid peroxidation (induced with xanthine and xanthine oxidase) or Ca2+ alone, whereas inhibition was 46% with their combination. Ca2+ enhancement of lipid peroxidation-induced damage to synaptosomes was intensified by the Ca2+ ionophore, A23187, and was partially blocked by the Ca2+ channel blocker, verapamil. Similarly, inhibition of state 3 respiration in isolated rat brain mitochondria was observed with Ca2+ and a free radical generating system (xanthine and xanthine oxidase) under conditions where either insult alone failed to cause detectable damage. Na+,K+-ATPase activity of cultured fetal mouse spinal cord neurons was inhibited 32% when cells were incubated for 30 minutes in the presence of both A23187 and a free radical generating system. However, Na+,K+-ATPase was not affected during a 30 minute incubation with either A23187 or radical generating system alone. In further studies, peroxidation of rat brain synaptosomes by ferrous iron (Fe2+) and H2O2 was coupled with a rapid and large (2-7-fold) uptake of Ca2+ by synaptosomes. Fe2+ also enhanced Ca2+ uptake by spinal cord neurons in culture, an effect that was coincident with peroxidation of neuronal membranes and the release of arachidonic acid from cells. Iron-induced Ca2+ uptake was blocked by high concentrations of either desferrioxamine or methylprednisolone, whereas Ca2+ channel blockers did not affect Ca2+ uptake induced by Fe2+. Finally, peroxidation of membrane lipids by Fe2+ was stimulated by Ca2+. Concentrations of Ca2+ as low as 10(-9) M increased peroxidation reactions within brain synaptosomal membranes. The results of these studies indicate that lipid peroxidation and Ca2+ can synergistically act to damage biologic membranes. The findings suggest that Ca2+ and lipid peroxidation cannot be considered as separate entities in the pathophysiology of CNS trauma. A hypothesis proposing an inseparable interplay between lipid peroxidation and Ca2+ in the pathogenesis of traumatic and ischemic cell injury is presented.

66 citations

Journal ArticleDOI
TL;DR: The data agree with the thesis that a generation of thiol groups is essential to maintain membrane integrity and that the generation depends on provision of reduced NAD(P)H.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of intestinal preconditioning on the xanthine oxidase system, the relevance of this system in the development of injury, and its relationship with nitric oxide were determined.
Abstract: Previous studies have demonstrated that intestinal preconditioning protects the organ from ischemia reperfusion damage. Xanthine oxidase mediating free radical generation contributes to the development of injury associated to ischemia reperfusion. Thus, any process able to modulate the oxygen free radical generation system could attenuate the injury. Also, it is known that nitric oxide is implicated in the preconditioning response. The aim of this work is to determine: (1) the effect of intestinal preconditioning on the xanthine oxidase system, (2) the relevance of this system in the development of injury, and (3) its relationship with nitric oxide. For this purpose, we have determined the activity of the xanthine dehydrogenase/xanthine oxidase system, the levels of its substrate (xanthine), and end-product (uric acid) and oxidant stress status in rat small intestine subjected to ischemic pre-conditioning. The effects of nitric oxide inhibition have also been evaluated. Results show that the percentage of xanthine dehydrogenase to xanthine oxidase conversion, xanthine, uric acid concentration, lipoperoxides, and reduced glutathione were significantly reduced in preconditioned rats irrespectively of nitric oxide inhibition. In summary, this work shows that oxidative stress in intestinal preconditioning is reduced as consequence of the diminished conversion of xanthine dehydrogenase to xanthine oxidase, and also as a consequence of the reduced availability of xanthine.

65 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
85% related
Nitric oxide
48.1K papers, 2.3M citations
83% related
Ascorbic acid
93.5K papers, 2.5M citations
83% related
Mitochondrion
51.5K papers, 3M citations
82% related
Reactive oxygen species
36.6K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022108
202157
202060
201961
201869