scispace - formally typeset
Search or ask a question
Topic

Xanthine

About: Xanthine is a research topic. Over the lifetime, 4046 publications have been published within this topic receiving 129820 citations. The topic is also known as: Xanthine.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that I/R produced a dramatic increase in vascular permeability coincident with an increase in muscle xanthine oxidase activity.
Abstract: Previous reports indicate that allopurinol, a xanthine oxidase inhibitor, attenuates the microvascular injury produced by reperfusion of ischemic skeletal muscle. To further assess the role of xanthine oxidase in ischemia/reperfusion (I/R) injury, we examined the effect of xanthine oxidase depletion or inhibition on the increase in microvascular permeability produced by I/R. Changes in vascular permeability were assessed by measurement of the solvent drag reflection coefficient for total plasma proteins (sigma) in rat hindquarters subjected to 2 h of ischemia and 30 min of reperfusion in xanthine oxidase-replete and -depleted animals and in animals pretreated with the xanthine oxidase inhibitor oxypurinol. Xanthine oxidase depletion was accomplished by administration of a tungsten-supplemented (0.7 g/kg diet), molybdenum-deficient diet. In animals fed the tungsten diet, muscle total xanthine dehydrogenase plus xanthine oxidase activity was decreased to less than 10% of control values. Estimates of sigma averaged 0.85 +/- 0.04 in nonischemic (continuous perfusion for 2.5 h) hindquarters, whereas muscle xanthine oxidase activity averaged 3.3 +/- 0.4 mU/g wet wt. I/R was associated with a marked decrease in sigma (0.54 +/- 0.02), whereas xanthine oxidase activity was increased to 5.8 +/- 0.5 mU/g wet wt. These results indicate that I/R produced a dramatic increase in vascular permeability coincident with an increase in muscle xanthine oxidase activity. Xanthine oxidase depletion with the tungsten diet or pretreatment with oxypurinol attenuated this permeability increase (sigma = 0.72 +/- 0.03 and 0.77 +/- 0.7, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

47 citations

Journal ArticleDOI
TL;DR: It is demonstrated that spin trapping using DMPO was at least 20-fold more sensitive than the reduction of cytochrome c for the measurement of superoxide anions, and EPR spin trapping may underestimate radical production, probably due to degradation of D MPO radical adducts.

47 citations

Journal ArticleDOI
TL;DR: H2O2 alone, and/or the oxygen-derived species, superoxide anion and peroxyl radicals, can all directly interact in vitro with MT to modify the protein oxidatively, and suggest that, under in vivo conditions, these species may be implicated as modifying factors of the metal-binding capacity of metallothionein.

47 citations

Journal ArticleDOI
TL;DR: Ca2+ derived from extracellular sources promoted superoxide radical production and renal cell injury by a calmodulin-dependent conversion of xanthine dehydrogenase to xanthin oxidase, a major source of oxygen free radicals during H/R.
Abstract: Hypoxia and reoxygenation (H/R) generate oxygen free radicals that result in renal cell injury. We tested the roles of calcium and calmodulin in mediating xanthine oxidase-derived oxygen free radical production during H/R. Lowering extracellular Ca2+ attenuated lethal cell injury. H/R increased superoxide radical production over basal levels, whereas removing extracellular Ca2+ before hypoxia decreased superoxide radical production to basal levels. Pretreatment with either 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride or thapsigargin, to inhibit release or deplete stores of intracellular Ca2+, did not affect injury following H/R. Ionomycin increased lactate dehydrogenase release during H/R but did not increase superoxide radical to levels greater than that observed for H/R alone. The calmodulin inhibitors trifluoperazine, calmidazolium, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide decreased cell injury to varying degrees. Trifluoperazine also decreased superoxide radical production during H/R and was shown to inhibit the conversion of xanthine dehydrogenase to xanthine oxidase. Cell injury and superoxide radical production correlated with cytosolic free Ca2+ during H/R as determined with the Ca(2+)-sensitive fluoroprobe indo 1. Cytosolic free Ca2+ increased slightly during hypoxia and showed a dramatic increase as soon as cells were reoxygenated. Cells incubated in a Ca(2+)-free medium actually showed a small decrease in intracellular Ca2+ despite H/R. In summary, Ca2+ derived from extracellular sources promoted superoxide radical production and renal cell injury by a calmodulin-dependent conversion of xanthine dehydrogenase to xanthine oxidase, a major source of oxygen free radicals during H/R.

47 citations

Journal ArticleDOI
TL;DR: Ethanol had only a moderate effect on viability in aerobiosis, but accelerated the loss of hypoxic cells, which was 96% after 3 h of incubation, and the conversion of xanthine oxidase of hepatocytes cytosol was converted from D into O form by human plasma or serum.

47 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
85% related
Nitric oxide
48.1K papers, 2.3M citations
83% related
Ascorbic acid
93.5K papers, 2.5M citations
83% related
Mitochondrion
51.5K papers, 3M citations
82% related
Reactive oxygen species
36.6K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022108
202157
202060
201961
201869