scispace - formally typeset
Search or ask a question
Topic

Xanthine

About: Xanthine is a research topic. Over the lifetime, 4046 publications have been published within this topic receiving 129820 citations. The topic is also known as: Xanthine.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that oxygen‐derived free radicals can stimulate the synthesis of endothelin‐1 in endothelial and vascular smooth muscle cells by increasing preproendothelin-1 mRNA content and that this effect is mediated predominantly by superoxide anions.
Abstract: Endothelins, nitric oxide, and oxygen-derived free radicals decisively regulate vascular tone. An imbalance in the biosynthesis of these substances in pathophysiologic conditions may trigger vasospasm and promote the development of atherosclerosis. Previous studies have shown that oxygen-derived free radicals can increase the synthesis of endothelin-1 in cultured endothelial cells. Interestingly, conditions of increased oxidative stress within smooth muscle cells as induced by angiotensin II infusion or hypercholesterolemia have been shown to be associated with increased autocrine synthesis of endothelin-1. Because endothelin-1 formed in smooth muscle cells can trigger hypersensitivity to vasoconstrictors, we tested whether oxidative stress per se may affect endothelin expression in vascular smooth muscle cells. Cultured human coronary artery smooth muscle cells were exposed to oxidative stress generated by the xanthine/xanthine oxidase reaction or by hydrogen peroxide. Preproendothelin-1 mRNA content was quantitated by means of quantitative polymerase chain reaction and endothelin-1 protein was measured by radioimmunoassay. Incubation with xanthine/xanthine oxidase significantly increased preproendothelin-1 mRNA synthesis, whereas GAPDH remained unchanged. Likewise, xanthine/xanthine oxidase also led to a dose-dependent increase of intracellular endothelin-1. The increase in ET-1 expression induced by xanthine/xanthine oxidase was significantly inhibited by superoxide dismutase but not by catalase. We conclude that oxygen-derived free radicals can stimulate the synthesis of endothelin-1 in endothelial and vascular smooth muscle cells by increasing preproendothelin-1 mRNA content and that this effect is mediated predominantly by superoxide anions. We therefore have identified a new mechanism in the interaction of oxidative stress and endothelin-1 expression in smooth muscle cells that may have important implications in diseases such as atherosclerosis and hypertension.

151 citations

Journal ArticleDOI
TL;DR: 1,3-dipropyl-8-(2-amino-4-chlorophenyl) xanthine, a compound of extraordinary receptor affinity, with a Ki for adenosine A1 receptors of 22 pM, is proposed, which is 4,000,000 times more potent than xanthines itself and 70,000times more powerful than theophylline.
Abstract: Structure-activity analysis of alkylxanthine derivatives at adenosine receptor binding sites has been employed to design more potent adenosine receptor antagonists. Receptor affinities of xanthines were determined by measuring inhibition of the binding of N6-[3H]cyclohexyladenosine to bovine brain membranes. 1,3-Dipropyl substitutions enhance potency compared to the 1,3-dimethyl substitution in theophylline. An 8-phenyl substituent produces a considerable increase in potency, which is augmented by certain para substitutions on the 8-phenyl ring. Combining an ortho amino with a para-chloro substituent on the 8-phenyl ring affords further increases in potency. Combining all of these substituents results in 1,3-dipropyl-8-(2-amino-4-chlorophenyl) xanthine, a compound of extraordinary receptor affinity, with a Ki for adenosine A1 receptors of 22 pM. It is 4,000,000 times more potent than xanthine itself and 70,000 times more potent than theophylline.

151 citations

Journal ArticleDOI
TL;DR: The xanthine oxidase activity of body fluids and tissues which are accessible to biopsy in the living human subject, and of some human necropsy tissues, have been determined.

150 citations

Journal ArticleDOI
TL;DR: It is suggested that the species differences in endogenous purine derivative excretion were probably due to the different profiles of xanthine oxidase activity in tissues and particularly in the blood, by increasing the probability of degradation to compounds which could not be salvaged.
Abstract: The endogenous urinary excretion of the purine derivatives allantoin, uric acid and xanthine plus hypoxanthine were measured in twenty-nine lambs, ten cattle (six steers, one cow and three preruminant calves) and four pigs. The sheep and mature cattle were nourished by intragastric infusion and the calves were given a milk-substitute. The pigs were fed on a purine-free diet. The excretion of total purine derivatives was substantially greater by the cattle, being 514 (SE 20.6) mumol/kg live weight (W)0.75 per d compared with 168 (SE 5.0) mumol/kg W0.75 per d by the sheep and 166 (SE 2.6) mumol/kg W0.75 per d by the pigs. Plasma from normally fed sheep, cows and pigs was incubated with either xanthine or uric acid. Sheep and pig plasma had no xanthine oxidase (EC 1.2.3.2) activity whereas plasma from cattle did. Uricase (EC 1.7.3.3) was not present in plasma of cattle and pigs and appeared to be present in trace amounts only in sheep plasma. It is suggested that the species differences in endogenous purine derivative excretion were probably due to the different profiles of xanthine oxidase activity in tissues and particularly in the blood. This is because a high xanthine oxidase activity would reduce the chance to recycle purines, by increasing the probability of degradation to compounds which could not be salvaged.

149 citations

Journal ArticleDOI
TL;DR: Results demonstrate that these methylxanthines are direct inhibitors of PI3K lipid kinase activity but are distinctly less effective against serine kinaseActivity and thus could be of potential use in dissecting these two distinct kinase activities.

148 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
85% related
Nitric oxide
48.1K papers, 2.3M citations
83% related
Ascorbic acid
93.5K papers, 2.5M citations
83% related
Mitochondrion
51.5K papers, 3M citations
82% related
Reactive oxygen species
36.6K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022108
202157
202060
201961
201869