scispace - formally typeset
Search or ask a question
Topic

Xanthine

About: Xanthine is a research topic. Over the lifetime, 4046 publications have been published within this topic receiving 129820 citations. The topic is also known as: Xanthine.


Papers
More filters
Journal ArticleDOI
TL;DR: The present hypothesis is that, at elevated concentrations of substrates, oxypurinol would be superior to allopur inol as an inhibitor of the xanthine oxidase-catalyzed production of superoxide radical.

74 citations

Journal ArticleDOI
TL;DR: The individual enantiomers 8 and 12 of the potent and highly selective racemic A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthine (ENX, 4) were synthesized utilizing asymmetric Diels-Alder cycloadditions for the construction of the norbornane moieties.
Abstract: The individual enantiomers 8 and 12 of the potent and highly selective racemic A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthine (ENX, 4) were synthesized utilizing asymmetric Diels-Alder cycloadditions for the construction of the norbornane moieties. The absolute configuration of 12 was determined by X-ray crystallography of the 4-bromobenzoate 14, which was derived from the bridged secondary alcohol 13. The latter was obtained from 12 by an acid-catalyzed intramolecular rearrangement. The binding affinities of the enantiomers 8 and 12 and the racemate 4 at guinea pig, rat, and cloned human A1- and A2a-adenosine receptor subtypes were determined. The S-enantiomer 12 (CVT-124) appears to be one of the more potent and clearly the most A1-selective antagonist reported to date, with K1 values of 0.67 and 0.45 nM, respectively, at the rat and cloned human A1-receptors and with 1800-fold (rat) and 2400-fold (human) subtype selectivity. Both enantiomers, administered intravenously to saline-loaded rats, induced diuresis via antagonism of renal A1-adenosine receptors.

74 citations

Journal ArticleDOI
TL;DR: The hypothesis that there is enhanced hypoxanthine salvage in hereditary xanthinuria is supported and degradation of guanine nucleotides to xanthine bypasses the hypox anthine salvage pathway and may explain the predominance of this urinary purine compound in xanth inuria.
Abstract: We tested the hypothesis that there is an enhanced rate of hypoxanthine salvage in two siblings with hereditary xanthinuria. We radiolabeled the adenine nucleotide pool with [8-14C]adenine and examined purine nucleotide degradation after intravenous fructose. The cumulative excretion of radioactivity during a 5-d period was 9.7% and 9.1% of infused radioactivity in the enzyme-deficient patients and 6.0 +/- 0.7% (mean +/- SE) in four normal subjects. Fructose infusion increased urinary radioactivity to 7.96 and 9.16 X 10(6) cpm/g creatinine in both patients and to 4.73 +/- 0.69 X 10(6) cpm/g creatinine in controls. The infusion of fructose increased total urinary purine excretion to a mean of 487% from low-normal baseline values in the patients and to 398 +/- 86% in control subjects. In the enzyme-deficient patients, the infusion of fructose elicited an increase of plasma guanosine from undetectable values to 0.7 and 0.9 microM. With adjustments made for intestinal purine loss, these data support the hypothesis that there is enhanced hypoxanthine salvage in hereditary xanthinuria. Degradation of guanine nucleotides to xanthine bypasses the hypoxanthine salvage pathway and may explain the predominance of this urinary purine compound in xanthinuria.

74 citations

Journal ArticleDOI
TL;DR: It is concluded that adenosine dramatically decreases astroglial injury during combined glucose‐oxygen deprivation and that this protective effect appears to be mediated by inosine.
Abstract: Preliminary evidence suggests adenosine, a neuromodulator, has neuroprotective properties during cerebral ischemia. It is unclear, however, if adenosine has glioprotective effects. We studied the effect of adenosine on cellular injury in astroglial cultures subjected to combined glucose-oxygen deprivation. Adenosine (100-1,000 microM)dramatically reduced astroglial injury, whereas the adenosine agonists 2-chloroadenosine (10 nM-100 microM), N6-cyclopentyladenosine (1 nM-10 microM), 5'-N-ethylcarboxamidoadenosine (10 nM-100 microM), and N6-2-(4-aminophenyl)ethyladenosine (10 nM-100 microM) had no effect. Furthermore, the adenosine antagonists 8-cyclopentyl-1,3-dipropylxanthine (1 nM-1 microM), xanthine amine congener (10 nM-10 microM), and 8-(p-sulfophenyl)-theophylline (10-300 microM) failed to reverse the protective effect of 200 microM adenosine. Next, adenosine degradation products were studied. Inosine proved to be glioprotective at concentrations nearly identical to those of adenosine, but hypoxanthine and ribose had no effect. The protective effect of 200 microM inosine was not reversed by 8-(p-sulfophenyl)theophylline (10-300 microM). Adenosine deaminase (1 unit/ml) had no effect on protection produced by adenosine, whereas erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (10 microM) reversed the protective effect of adenosine. Dipyridamole (4 microM) inhibited the protective effect of both adenosine and inosine. We conclude that adenosine dramatically decreases astroglial injury during combined glucose-oxygen deprivation and that this protective effect appears to be mediated by inosine.

74 citations

Journal ArticleDOI
TL;DR: In this paper, exogenous and exogenous accumulation of nucleobases was observed when Escherichia coli entered the stationary phase, which was attributed to degradation of rRNA.
Abstract: Endogenous and exogenous accumulation of nucleobases was observed when Escherichia coli entered the stationary phase. The onset of the stationary phase was accompanied by excretion of uracil and xanthine. Except for uracil and xanthine, other nucleobases (except for minor amounts of hypoxanthine), nucleosides, and nucleotides (except for cyclic AMP) were not detected in significant amounts in the culture medium. In addition to exogenous accumulation of nucleobases, stationary-phase cells increased the endogenous concentrations of free nucleobases. In contrast to extracellular nucleobases, hypoxanthine was the dominating intracellular nucleobase and xanthine was present only in minor concentrations inside the cells. Excretion of nucleobases was always connected to declining growth rates. It was observed in response to entry into the stationary phase independent of the initial cause of the cessation of cell growth (e.g., starvation for essential nutrients). In addition, transient accumulation of exogenous nucleobases was observed during perturbations of balanced growth conditions such as energy source downshifts. The nucleobases uracil and xanthine are the final breakdown products of pyrimidine (uracil and cytosine) and purine (adenine and guanine) bases, respectively. Hypoxanthine is the primary degradation product of adenine, which is further oxidized to xanthine. The endogenous and exogenous accumulation of these nucleobases in response to entry into the stationary phase is attributed to degradation of rRNA.

74 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
85% related
Nitric oxide
48.1K papers, 2.3M citations
83% related
Ascorbic acid
93.5K papers, 2.5M citations
83% related
Mitochondrion
51.5K papers, 3M citations
82% related
Reactive oxygen species
36.6K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022108
202157
202060
201961
201869