scispace - formally typeset
Search or ask a question
Topic

Xanthomonas oryzae

About: Xanthomonas oryzae is a research topic. Over the lifetime, 2235 publications have been published within this topic receiving 58755 citations.


Papers
More filters
Journal ArticleDOI
15 Dec 1995-Science
TL;DR: The rice Xa21 gene, which confers resistance to Xanthomonas oryzae pv. race 6, was isolated by positional cloning and the sequence of the predicted protein, which carries both a leucine-rich repeat motif and a serine-threonine kinase-like domain, suggests a role in cell surface recognition of a pathogen ligand and subsequent activation of an intracellular defense response.
Abstract: The rice Xa21 gene, which confers resistance to Xanthomonas oryzae pv. oryzae race 6, was isolated by positional cloning. Fifty transgenic rice plants carrying the cloned Xa21 gene display high levels of resistance to the pathogen. The sequence of the predicted protein, which carries both a leucine-rich repeat motif and a serine-threonine kinase-like domain, suggests a role in cell surface recognition of a pathogen ligand and subsequent activation of an intracellular defense response. Characterization of Xa21 should facilitate understanding of plant disease resistance and lead to engineered resistance in rice.

2,023 citations

15 Dec 1995
TL;DR: The sequence of the predicted protein, which carries both a leucine-rich repeat motif and a serine-threonine kinase-like domain, suggests a role in cell surface recognition of a pathogen ligand and subsequent activation of an intracellular defense response.
Abstract: The rice Xa21 gene, which confers resistance to Xanthomonas oryzae pv. oryzae race 6, was isolated by positional cloning. Fifty transgenic rice plants carrying the cloned Xa21 gene display high levels of resistance to the pathogen. The sequence of the predicted protein, which carries both a leucine-rich repeat motif and a serine-threonine kinase-like domain, suggests a role in cell surface recognition of a pathogen ligand and subsequent activation of an intracellular defense response. Characterization of Xa21 should facilitate understanding of plant disease resistance and lead to engineered resistance in rice.

1,940 citations

Journal ArticleDOI
TL;DR: A survey of bacterial pathologists asked them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance, and a short section is presented on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community.
Abstract: Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10.

1,479 citations

Journal ArticleDOI
TL;DR: A comprehensive DNA-DNA hybridization study was performed by using 183 strains of the genus Xanthomonas, showing this genus was shown to comprise 20 DNA homology groups which are considered genomic species.
Abstract: A comprehensive DNA-DNA hybridization study was performed by using 183 strains of the genus Xanthomonas. This genus was shown to comprise 20 DNA homology groups which are considered genomic species. Four groups corresponded to the previously described species Xanthomonas albilineans, Xanthomonas fragariae, Xanthomonas oryzae, and Xanthomonas populi. The previously described species Xanthomonas campestris was heterogeneous and was divided into 16 DNA homology groups. One of these groups exhibited a high level of DNA homology with Xanthomonas axonopodis. The 62 pathovars represented in this study were allocated to appropriate species. Our results, together with previous taxonomic data, supported a comprehensive revision of the classification of the genus Xanthomonas. The species X. albilineans, X. fragariae, X. oryzae, and X. populi are not affected. The type species of the genus, X. campestris (Pammel 1895) Dowson 1939, is emended to include only the pathovars obtained from crucifers (i.e., X. campestris pv. aberrans, X. campestris pv. armoraciae, X. campestris pv. barbareae, X. campestris pv. campestris, X. campestris pv. incanae, and X. campestris pv. raphani). X. axonopodis Starr and Garces 1950 is emended to include 34 former X. campestris pathovars. The following species names are proposed: Xanthomonas arboricola sp. nov., including X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. poinsettiicola (type C strains of the former X. campestris pathovar), X. arboricola pv. populi, and X. arboricola pv. pruni; Xanthomonas bromi sp. nov. for strains isolated from bromegrass; Xanthomonas cassavae (ex Wiehe and Dowson 1953) sp. nov., nom. rev.; Xanthomonas codiaei sp. nov., including type B strains of the former taxon X. campestris pv. poinsettiicola; Xanthomonas cucurbitae (ex Bryan 1926) sp. nov., nom. rev.; Xanthomonas hortorum sp. nov., including X. hortorum pv. hederae, X. hortorum pv. pelargonii, and X. hortorum pv. vitians; Xanthomonas hyacinthi (ex Wakker 1883) sp. nov., nom. rev.; Xanthomonas melonis sp. nov.; Xanthomonas pisi (ex Goto and Okabe 1958) sp. nov., nom. rev.; Xanthomonas sacchari sp. nov. for strains isolated from diseased sugarcane in Guadeloupe; Xanthomonas theicola sp. nov.; Xanthomonas translucens (ex Jones, Johnson, and Reddy 1917) sp. nov., nom. rev., including X. translucens pv. arrhenatheri, X. translucens pv. cerealis, X. translucens pv. graminis, X. translucens pv. hordei, X. translucens pv. phlei, X. translucens pv. phleipratensis, X. translucens pv. poae, X. translucens pv. secalis, X. translucens pv. translucens, and X. translucens pv. undulosa; Xanthomonas vasicola sp. nov., including X. vasicola pv. holcicola and X. vasicola pv. vasculorum (type B strains of the former taxon X. campestris pv. vasculorum); and Xanthomonas vesicatoria (ex Doidge 1920) sp. nov., nom. rev., which includes the type B strains of the former taxon X. campestris pv. vesicatoria. Differentiating characteristics were determined for the new species on the basis of metabolic activity on a range of carbon substrates by using the Biolog GN microplate system.

904 citations


Network Information
Related Topics (5)
Transformation (genetics)
11.4K papers, 454.3K citations
84% related
Rhizosphere
21.9K papers, 756.3K citations
83% related
Hordeum vulgare
20.3K papers, 717.5K citations
82% related
Shoot
32.1K papers, 693.3K citations
82% related
Seedling
28.6K papers, 478.2K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023105
2022200
2021147
2020149
2019155
2018144