scispace - formally typeset
Search or ask a question
Topic

XCL2

About: XCL2 is a research topic. Over the lifetime, 927 publications have been published within this topic receiving 81229 citations. The topic is also known as: SCM-1b & SCM1B.


Papers
More filters
Journal ArticleDOI
28 Jun 1996-Cell
TL;DR: The ability of various members of the chemokine receptor family to support the early stages of HIV-1 infection helps to explain viral tropism and beta-chemokine inhibition of primary HIV- 1 isolates.

2,428 citations

Journal ArticleDOI
13 Feb 1997-Nature
TL;DR: The structure, biochemical features, tissue distribution and chromosomal localization of CX3C chemokine all indicate that it represents a unique class of chemokines that may constitute part of the molecular control of leukocyte traffic at the endothelium.
Abstract: Chemokines direct the trafficking of white blood cells in immune surveillance, playing a key role in inflammatory and infectious diseases such as AIDS. All chemokines studied so far are secreted proteins of relative molecular mass approximately 7K-15K and fall into three families that are defined by a cysteine signature motif: CXC, CC and C (refs 3, 6, 7), where C is a cysteine and X any amino-acid residue. We report here the identification and characterization of a fourth human chemokine type, derived from non-haemopoietic cells and bearing a new CX3C fingerprint. Unlike other chemokine types, the polypeptide chain of the human CX3C chemokine is predicted to be part of a 373-amino-acid protein that carries the chemokine domain on top of an extended mucin-like stalk. This molecule can exist in two forms: either membrane-anchored or as a shed 95K glycoprotein. The soluble CX3C chemokine has potent chemoattractant activity for T cells and monocytes, and the cell-surface-bound protein, which is induced on activated primary endothelial cells, promotes strong adhesion of those leukocytes. The structure, biochemical features, tissue distribution and chromosomal localization of CX3C chemokine all indicate that it represents a unique class of chemokine that may constitute part of the molecular control of leukocyte traffic at the endothelium.

1,955 citations

Journal ArticleDOI
TL;DR: It is demonstrated that chemokine receptors are markers of naive and polarized T cell subsets and suggested that flexible programs of chemokin receptor gene expression may control tissue-specific migration of effector T cells.
Abstract: Chemokines and their receptors are important elements for the selective attraction of various subsets of leukocytes. To better understand the selective migration of functional subsets of T cells, chemokine receptor expression was analyzed using monoclonal antibodies, RNase protection assays, and the response to distinct chemokines. Naive T cells expressed only CXC chemokine receptor (CXCR)4, whereas the majority of memory/activated T cells expressed CXCR3, and a small proportion expressed CC chemokine receptor (CCR)3 and CCR5. When polarized T cell lines were analyzed, CXCR3 was found to be expressed at high levels on T helper cell (Th)0s and Th1s and at low levels on Th2s. In contrast, CCR3 and CCR4 were found on Th2s. This was confirmed by functional responses: only Th2s responded with an increase in [Ca2+]i to the CCR3 and CCR4 agonists eotaxin and thymus and activation regulated chemokine (TARC), whereas only Th0s and Th1s responded to low concentrations of the CXCR3 agonists IFN-γ–inducible protein 10 (IP-10) and monokine induced by IFN-γ (Mig). Although CCR5 was expressed on both Th1 and Th2 lines, it was absent in several Th2 clones and its expression was markedly influenced by interleukin 2. Chemokine receptor expression and association with Th1 and Th2 phenotypes was affected by other cytokines present during polarization. Transforming growth factor β inhibited CCR3, but enhanced CCR4 and CCR7 expression, whereas interferon α inhibited CCR3 but upregulated CXCR3 and CCR1. These results demonstrate that chemokine receptors are markers of naive and polarized T cell subsets and suggest that flexible programs of chemokine receptor gene expression may control tissue-specific migration of effector T cells.

1,589 citations

Journal ArticleDOI
TL;DR: Different patterns of chemokine receptors in immature and mature DC are consistent with “inflammatory” and “primary response” phases of DC function.
Abstract: Dendritic cells (DC) migrate into inflamed peripheral tissues where they capture antigens and, following maturation, to lymph nodes where they stimulate T cells. To gain insight into this process we compared chemokine receptor expression in immature and mature DC. Immature DC expressed CCR1, CCR2, CCR5 and CXCR1 and responded to their respective ligands, which are chemokines produced at inflammatory sites. Following stimulation with LPS or TNF-alpha maturing DC expressed high levels of CCR7 mRNA and acquired responsiveness to the CCR7 ligand EBI1 ligand chemokine (ELC), a chemokine produced in lymphoid organs. Maturation also resulted in up-regulation of CXCR4 and down-regulation of CXCR1 mRNA, while CCR1 and CCR5 mRNA were only marginally affected for up to 40 h. However, CCR1 and CCR5 were lost from the cell surface within 3 h, due to receptor down-regulation mediated by chemokines produced by maturing DC. A complete down-regulation of CCR1 and CCR5 mRNA was observed only after stimulation with CD40 ligand of DC induced to mature by LPS treatment. These different patterns of chemokine receptors are consistent with "inflammatory" and "primary response" phases of DC function.

1,256 citations

Journal ArticleDOI
TL;DR: A specific, high affinity small molecule antagonist to CXCR7 impedes in vivo tumor growth in animal models, validating this new receptor as a target for development of novel cancer therapeutics.
Abstract: The chemokine stromal cell–derived factor (SDF-1; also known as chemokine ligand 12 [CXCL12]) regulates many essential biological processes, including cardiac and neuronal development, stem cell motility, neovascularization, angiogenesis, apoptosis, and tumorigenesis. It is generally believed that SDF-1 mediates these many disparate processes via a single cell surface receptor known as chemokine receptor 4 (CXCR4). This paper characterizes an alternate receptor, CXCR7, which binds with high affinity to SDF-1 and to a second chemokine, interferon-inducible T cell α chemoattractant (I-TAC; also known as CXCL11). Membrane-associated CXCR7 is expressed on many tumor cell lines, on activated endothelial cells, and on fetal liver cells, but on few other cell types. Unlike many other chemokine receptors, ligand activation of CXCR7 does not cause Ca2+ mobilization or cell migration. However, expression of CXCR7 provides cells with a growth and survival advantage and increased adhesion properties. Consistent with a role for CXCR7 in cell survival and adhesion, a specific, high affinity small molecule antagonist to CXCR7 impedes in vivo tumor growth in animal models, validating this new receptor as a target for development of novel cancer therapeutics.

1,239 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
81% related
Cytokine
79.2K papers, 4.4M citations
81% related
Cytotoxic T cell
92.4K papers, 4.7M citations
80% related
Immune system
182.8K papers, 7.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
20225
20182
201725
201618
201519