scispace - formally typeset
Search or ask a question
Topic

Xenophagy

About: Xenophagy is a research topic. Over the lifetime, 281 publications have been published within this topic receiving 24369 citations.


Papers
More filters
Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: A crucial role is revealed for the autophagy pathway and proteins in immunity and inflammation, and they balance the beneficial and detrimental effects of immunity andinflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.
Abstract: Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy - the 'autophagy proteins' - orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.

2,757 citations

Journal ArticleDOI
17 Dec 2004-Cell
TL;DR: It is demonstrated that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis, which is a hormonally, developmentally, and immunologically regulated process, represents an underapp appreciated innate defense mechanism for control of intracellular pathogens.

2,108 citations

Journal ArticleDOI
20 Aug 2015-Nature
TL;DR: Using genome editing to knockout five autophagy receptors in HeLa cells, this work shows that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy.
Abstract: Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome editing to knockout five autophagy receptors in HeLa cells, here we show that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy. PINK1 recruits NDP52 and optineurin, but not p62, to mitochondria to activate mitophagy directly, independently of parkin. Once recruited to mitochondria, NDP52 and optineurin recruit the autophagy factors ULK1, DFCP1 and WIPI1 to focal spots proximal to mitochondria, revealing a function for these autophagy receptors upstream of LC3. This supports a new model in which PINK1-generated phospho-ubiquitin serves as the autophagy signal on mitochondria, and parkin then acts to amplify this signal. This work also suggests direct and broader roles for ubiquitin phosphorylation in other autophagy pathways.

1,783 citations

Journal ArticleDOI
TL;DR: As discussed in this Review, autophagy has multitiered immunological functions that influence infection, inflammation and immunity.
Abstract: It is increasingly understood that autophagy is an ancient defence mechanism that has become incorporated into numerous immunological pathways. As discussed in this Review, its immunological roles include the elimination of microorganisms, the control of inflammation, the regulation of antigen presentation and lymphocyte homeostasis, and the secretion of immune mediators.

1,549 citations

Journal ArticleDOI
TL;DR: The results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.
Abstract: Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-kappaB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohn's disease-associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.

1,208 citations


Network Information
Related Topics (5)
Innate immune system
45.5K papers, 2.7M citations
77% related
Regulation of gene expression
85.4K papers, 5.8M citations
74% related
Signal transduction
122.6K papers, 8.2M citations
74% related
Transcription (biology)
56.5K papers, 2.9M citations
74% related
Transcription factor
82.8K papers, 5.4M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202134
202036
201925
201819
201733
201622