scispace - formally typeset
Search or ask a question
Topic

Xylanase

About: Xylanase is a research topic. Over the lifetime, 7099 publications have been published within this topic receiving 163793 citations.


Papers
More filters
Book ChapterDOI
TL;DR: Xylanase T-6 was shown to partially remove lignin from unbleached pulp at 65 °C and pH 9.0, without loss in pulp viscosity, and was used to make handsheets that had higher brightness than untreated pulp.
Abstract: During the bleaching of wood pulp for the paper industry, large amounts of chlorinated aromatic compounds are produced and released into the environment. These compounds are extremely toxic and are a major source of pollution. The paper and pulp industry is seeking for alternative methods for bleaching pulp. One such method involves the use of hemicellulases to release the colored lignohemicellulose. We have isolated and characterized several thermophilic bacteria which produce xylanases. One such strain, T-6, produced high levels of extracellular xylanase, free of cellulase and proteinase activities. Strain T-6 was classified as a strain of Bacillus stearothermophilus and was able to grow on defined medium containing xylose, methionine and asparagine at 65 °C. Xylanase activity was induced by either xylose or xylan; no activity was detected with other carbon sources, such as glycerol, acetate, lactose, glucose, maltose, fructose, mannose, galactose or sucrose. Xylanase constitutive mutants were obtained following mutagenesis and detection on p-nitrophenol β-d-xylopyranoside containing agar plates. Xylanase T-6 was produced on large scale, and was purified and concentrated by a single adsorption-desorption step from a cation exchanger. The overall purification yield of a 1000 liter fermentation was 45%, resulting in a 98% pure enzyme. Xylanase T-6 was shown to partially remove lignin from unbleached pulp at 65 °C and pH 9.0, without loss in pulp viscosity. The enzyme-treated pulp was used to make handsheets that had higher brightness than untreated pulp.

57 citations

Journal ArticleDOI
TL;DR: Several mono-, di, tetra-, and polysaccharides were screened for their ability to induced cellulase production by the tetrapolar hymenomycete Schizophyllum commune and 4 induced all three enzymes tested (carboxymethylcellulase, beta-glucosidase, and xylanase).
Abstract: Several mono-, di, tetra-, and polysaccharides were screened for their ability to induced cellulase production by the tetrapolar hymenomycete Schizophyllum commune. Out of 21 carbohydrates screened, 4 (thiocellobiose, carboxymethylcellulose, cellobiose, and xylan) induced all three enzymes tested (carboxymethylcellulase, beta-glucosidase, and xylanase). The inducing effect increased with rising concentrations of the inducers up to a certain value, beyond which there was either a leveling off or a decrease of the enzymatic activities. The most powerful inducer, thiocellobiose, showed the highest activity at 0.5 mM. Cellobiose, carboxymethylcellulose, and xylan showed their highest activities at 1 mM and 1%, respectively. Surprisingly, sophorose did not enhance enzyme production. The enzymatic activities were monitored over a period of 24 h. Thiocelloboise elicited a response immediately after incubation, but with all other inducers there was a latency period before their effect could be measured. High-performance liquid chromatography showed no hydrolysis of thiocellobiose when incubated in the presence of S. commune extracellular enzymes.

57 citations

Journal ArticleDOI
TL;DR: Xylanase and pectinase production by Streptomyces sp.
Abstract: Xylanase and pectinase production by Streptomyces sp. QG-11-3 was stimulated by DL-norleucine, L-leucine, DL-isoleucine, L-lysine monohydrochloride and DL-β-phenylalanine by up to 3.72- and 2.78-fold, respectively, whereas the combination of DL-norleucine, L-leucine and DL-isoleucine synergistically stimulated the xylanase and pectinase production by up to 6.72- and 5.62-fold, respectively. Glycine, DL-norvaline, DL-methionine, and DL-aspartic acid showed no significant stimulatory effect on enzyme production.

57 citations

Patent
05 Sep 1997
TL;DR: In this article, a modified xylanase of Family 11 was shown to have improved thermophilicity, alkalicity, and thermostability as compared to the natural xylan enzyme.
Abstract: Producing a xylanase enzyme of superior performance in the bleaching of pulp. More specifically, a modified xylanase of Family 11 that shows improved thermophilicity, alkalophilicity, and thermostability as compared to the natural xylanase. The modified xylanases contain any of three types of modifications: (1) changing amino acids 10, 27, and 29 of Trichoderma reesei xylanase II or the corresponding amino acids of another Family 11 xylanase, where these amino acids are changed to histidine, methionine, and leucine, respectively; (2) substitution of amino acids in the N-terminal region with amino acids from another xylanase enzyme. In a preferred embodiment, substitution of the natural Bacillus circulans or Trichoderma reesei xylanase with a short sequence of amino acids from Thermomonospora fusca xylanase yielded chimeric xylanases with higher thermophilicity and alkalophilicity; (3) an extension upstream of the N-terminus of up to 10 amino acids. In a preferred embodiment, extension of the N-terminus of the xylanase with the tripeptide glycine-arginine-arginine improved its performance.

57 citations

Journal ArticleDOI
TL;DR: Thin-layer chromatography (TLC) experiments revealed that purified L. sulphureus xylanase showed the highest activity on beechwood xylan, an endoxylanase that hydrolyzesxylotriose, xylotetraose, and xylopentaose but not xylobiose.

57 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
92% related
Yeast
31.7K papers, 868.9K citations
85% related
Starch
50.2K papers, 1M citations
84% related
Cellulose
59K papers, 1.4M citations
83% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023199
2022463
2021254
2020289
2019278
2018303