scispace - formally typeset
Search or ask a question
Topic

Xylanase

About: Xylanase is a research topic. Over the lifetime, 7099 publications have been published within this topic receiving 163793 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Xylanase activity of Clostridium thermocellum, an anaerobic thermophilic cellulolytic bacterium, was characterized andbeta-Glucosidase and beta-xylosid enzyme activities were shown to be the action of different enzymes; both were associated exclusively with the cell and were not components of the cellulosome.
Abstract: Xylanase activity of Clostridium thermocellum, an anaerobic thermophilic cellulolytic bacterium, was characterized. The activity was localized both in the cellulosome (the principal multienzyme, cellulose-solubilizing protein complex) and in noncellulosomal fractions. Each of these fractions contained at least four major polypeptide bands which contributed to the xylanolytic activity. In both cases, pH and temperature optima, product pattern, and other features of the xylanase activity were almost identical. The main difference was in the average molecular weights of the respective polypeptides which appeared responsible for the activity. In the noncellulosomal fraction, xylanases with Mrs ranging from 30,000 to 65,000 were detected. Distinct from these were the cellulosomal xylanases, which exhibited much larger Mrs (up to 170,000). The cellulosome-associated xylanases corresponded to known cellulosomal subunits, some of which also exhibited endoglucanase activity, and others which coincided with subunits which appeared to express exoglucanaselike activity. In contrast, the noncellulosomal xylanases hydrolyzed xylan exclusively. beta-Glucosidase and beta-xylosidase activities were shown to be the action of different enzymes; both were associated exclusively with the cell and were not components of the cellulosome. Despite the lack of growth on and utilization of xylan or its degradation products, C. thermocellum produces a highly developed xylanolytic apparatus which is interlinked with its cellulase system.

156 citations

Journal ArticleDOI
TL;DR: Xylooligosaccharide (XO) production was performed from xylan by alkali extraction from cotton stalk, a major agricultural waste in Turkey, and the effects of pH, temperature, hydrolysis period, and substrate and enzyme concentrations on the XO yield and degree of polymerization (DP) were investigated.
Abstract: Xylooligosaccharide (XO) production was performed from xylan, which was obtained by alkali extraction from cotton stalk, a major agricultural waste in Turkey. Enzymatic hydrolysis was selected to prevent byproduct formation such as xylose and furfural. Xylan was hydrolyzed using a commercial xylanase preparation, and the effects of pH, temperature, hydrolysis period, and substrate and enzyme concentrations on the XO yield and degree of polymerization (DP) were investigated. Cotton stalk contains about 21% xylan, the composition of which was determined as 84% xylose, 7% glucose, and 9% uronic acid after complete acid hydrolysis. XOs in the DP range of 2-7 (X6 approximately X5>X2>X3) were obtained with minor quantities of xylose in all of the hydrolysis conditions used. Although after 24 h of hydrolysis at 40 degrees C, the yield was about 53%, the XO production rate leveled off after 8-24 h of hydrolysis. XO yield was affected by all of the parameters investigated; however, none of them affected the DP of the end product significantly, except the hydrolysis period. Enzyme hydrolysis was maintained by the addition of fresh substrate after 72 h of hydrolysis, indicating the persistence of enzyme activity. The optimal hydrolysis conditions were determined as 40 degrees C, pH 5.4, and 2% xylan. The obtained product was fractionated via ultrafiltration by using 10, 3, and 1 kDa membranes. Complete removal of xylanase and unhydrolyzed xylan was achieved without losing any oligosaccharides having DP 5 or smaller by 10 kDa membrane. After a two-step membrane processing, a permeate containing mostly oligosaccharides was obtained.

156 citations

Journal ArticleDOI
TL;DR: In this article, the degradation of corn stover by the white rot fungus Ceriporiopsis subvermispora in solid-state cultivation was evaluated for improving subsequent enzymatic hydrolysis.

156 citations

Journal ArticleDOI
TL;DR: Although the drainage properties of the pulps could be improved by selected enzymes, the water retention capacity of the dried hornified fibers could not be recovered by any of the enzymes tested.

155 citations

Journal ArticleDOI
TL;DR: It appears that the thermostability of the T. lanuginosus xylanase is due to the presence of an extra disulfide bridge, as well as to an increase in the density of charged residues throughout the protein.
Abstract: The crystal structure of the thermostable xylanase from Thermomyces lanuginosus was determined by single-crystal X-ray diffraction. The protein crystallizes in space group P21, a = 40.96(4) A, b = 52. 57(5) A, c = 50.47 (5) A, beta = 100.43(5) degrees, Z = 2. Diffraction data were collected at room temperature for a resolution range of 25-1.55 A, and the structure was solved by molecular replacement with the coordinates of xylanase II from Trichoderma reesei as a search model and refined to a crystallographic R-factor of 0.155 for all observed reflections. The enzyme belongs to the family 11 of glycosyl hydrolases [Henrissat, B., and Bairoch, A. (1993) Biochem. J. 293, 781-788]. pKa calculations were performed to assess the protonation state of residues relevant for catalysis and enzyme stability, and a heptaxylan was fitted into the active-site groove by homology modeling, using the published crystal structure of a complex between the Bacillus circulans xylanase and a xylotetraose. Molecular dynamics indicated the central three sugar rings to be tightly bound, whereas the peripheral ones can assume different orientations and conformations, suggesting that the enzyme might also accept xylan chains which are branched at these positions. The reasons for the thermostability of the T. lanuginosus xylanase were analyzed by comparing its crystal structure with known structures of mesophilic family 11 xylanases. It appears that the thermostability is due to the presence of an extra disulfide bridge, as well as to an increase in the density of charged residues throughout the protein.

155 citations


Network Information
Related Topics (5)
Fermentation
68.8K papers, 1.2M citations
92% related
Yeast
31.7K papers, 868.9K citations
85% related
Starch
50.2K papers, 1M citations
84% related
Cellulose
59K papers, 1.4M citations
83% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023199
2022463
2021254
2020289
2019278
2018303