scispace - formally typeset
Search or ask a question
Topic

Y-factor

About: Y-factor is a research topic. Over the lifetime, 3793 publications have been published within this topic receiving 45742 citations.


Papers
More filters
Journal ArticleDOI
Behzad Razavi1
TL;DR: In this paper, the phase noise in two inductorless CMOS oscillators is analyzed and a new definition of phase noise is defined, and two prototypes fabricated in a 0.5/spl mu/m CMOS technology are used to investigate the accuracy of the theoretical predictions.
Abstract: This paper presents a study of phase noise in two inductorless CMOS oscillators. First-order analysis of a linear oscillatory system leads to a noise shaping function and a new definition of Q. A linear model of CMOS ring oscillators is used to calculate their phase noise, and three phase noise phenomena, namely, additive noise, high-frequency multiplicative noise, and low-frequency multiplicative noise, are identified and formulated. Based on the same concepts, a CMOS relaxation oscillator is also analyzed. Issues and techniques related to simulation of noise in the time domain are described, and two prototypes fabricated in a 0.5-/spl mu/m CMOS technology are used to investigate the accuracy of the theoretical predictions. Compared with the measured results, the calculated phase noise values of a 2-GHz ring oscillator and a 900-MHz relaxation oscillator at 5 MHz offset have an error of approximately 4 dB.

1,012 citations

Journal ArticleDOI
Marian Pospieszalski1
TL;DR: In this article, a simple noise model of a microwave MESFET (MODFET, HEMT, etc.) is described and verified at room and cryogenic temperatures.
Abstract: A simple noise model of a microwave MESFET (MODFET, HEMT, etc.) is described and verified at room and cryogenic temperatures. Closed-form expressions for the minimum noise temperature, the optimum generator impedance, the noise conductance, and the generator-impedance-minimizing noise measure are given in terms of the frequency, the elements of a FET equivalent circuit, and the equivalent temperatures of intrinsic gate resistance and drain conductance to be determined from noise measurements. These equivalent temperatures are demonstrated in the case of a Fujitsu FHR01FH MODFET to be independent of frequency in the frequency range in which 1/f noise is negligible. Thus, the model allows prediction of noise parameters for a broad frequency range from a single frequency noise parameter measurement. The relationships between this approach and other relevant studies are established. >

707 citations

Journal ArticleDOI
TL;DR: For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.
Abstract: We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K down to 2.9+/-0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.

386 citations

Journal ArticleDOI
TL;DR: A capacitor cross-coupled g/sub m/-boosting scheme is described that improves the NF and retains the advantages of the CGLNA topology and enables a significant reduction in current consumption.
Abstract: The conventional common-gate low-noise amplifier (CGLNA) exhibits a relatively high noise figure (NF) at low operating frequencies relative to the MOSFET f/sub T/, which has limited its adoption notwithstanding its superior linearity, input matching, and stability compared to the inductively degenerated common-source LNA (CSLNA). A capacitor cross-coupled g/sub m/-boosting scheme is described that improves the NF and retains the advantages of the CGLNA topology. The technique also enables a significant reduction in current consumption. A fully integrated capacitor cross-coupled CGLNA implemented in 180-nm CMOS validates the g/sub m/-boosting technique. It achieves a measured NF of 3.0 dB at 6.0 GHz and consumes only 3.6 mA from 1.8 V; the measured input-referred third-order intercept ( IIP3) value is 11.4 dBm. The capacitor cross-coupled g/sub m/-boosted CGLNA is attractive for low-power fully integrated applications in fine-line CMOS technologies.

336 citations

Journal ArticleDOI
TL;DR: In this article, analytical HF noise parameter equations for bipolar transistors are presented and experimentally tested on high-speed Si and SiGe technologies and a technique for extracting the complete set of transistor noise parameters from Y parameter measurements only is developed and verified.
Abstract: Fully scalable, analytical HF noise parameter equations for bipolar transistors are presented and experimentally tested on high-speed Si and SiGe technologies. A technique for extracting the complete set of transistor noise parameters from Y parameter measurements only is developed and verified. Finally, the noise equations are coupled with scalable variants of the HICUM and SPICE-Gummel-Poon models and are employed in the design of tuned low noise amplifiers (LNA's) in the 1.9-, 2.4-,and 5.8-GHz bands.

331 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
89% related
CMOS
81.3K papers, 1.1M citations
88% related
Integrated circuit
82.7K papers, 1M citations
87% related
Transistor
138K papers, 1.4M citations
86% related
Capacitance
69.6K papers, 1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202212
20193
20186
201796
2016128