scispace - formally typeset
Topic

Years of potential life lost

About: Years of potential life lost is a(n) research topic. Over the lifetime, 2521 publication(s) have been published within this topic receiving 200398 citation(s).

...read more

Papers
  More

Open accessJournal ArticleDOI: 10.1016/S0140-6736(12)61728-0
Rafael Lozano1, Mohsen Naghavi1, Kyle J Foreman2, Stephen S Lim1  +192 moreInstitutions (95)
15 Dec 2012-The Lancet
Abstract: Summary Background Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. Methods We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. Findings In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45–54% since 1990; ischaemic heart disease and stroke YLLs increased by 17–28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Interpretation Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Funding Bill & Melinda Gates Foundation.

...read more

Topics: Mortality rate (62%), Years of potential life lost (57%), Verbal autopsy (56%) ...read more

10,602 Citations


Open accessJournal ArticleDOI: 10.1016/S0140-6736(12)61766-8
Stephen S Lim1, Theo Vos, Abraham D. Flaxman1, Goodarz Danaei2  +207 moreInstitutions (92)
15 Dec 2012-The Lancet
Abstract: Methods We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent eff ects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. W e estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specifi c deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden. Findings In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2–7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5–7·0]), and alcohol use (5·5% [5·0–5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8–9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6–8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4–6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2–10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily aff ect childhood communicable diseases, including unimproved water and sanitation and childhood micronutrient defi ciencies, fell in rank between 1990 and 2010, with unimproved water

...read more

  • Figure 1. Burden of disease attributable to 20 leading risk factors in 1990, expressed as a percentage of global disability-adjusted life-years
    Figure 1. Burden of disease attributable to 20 leading risk factors in 1990, expressed as a percentage of global disability-adjusted life-years
  • Table 2
    Table 2
  • Figure 4. 95% uncertainty intervals for risk factors ranked by global attributable disabilityadjusted life-years, 2010
    Figure 4. 95% uncertainty intervals for risk factors ranked by global attributable disabilityadjusted life-years, 2010
  • Table 1 shows the sources of effect sizes per unit of exposure for each risk factor. Some effect sizes were based on meta-analyses of epidemiological studies. For several risk factors without recent systematic reviews or for which evidence had not recently been synthesised, new meta-analyses were done as part of GBD 2010. We used effect sizes that had been adjusted for measured confounders but not for factors along the causal pathway. For example, effect sizes for body-mass index were not adjusted for blood pressure. For some risk–outcome pairs, evidence is only available for the relative risk (RR) of morbidity or mortality. In these cases, we assumed that the reported RR would apply equally to morbidity or mortality, unless evidence suggested a differential effect. For example, studies of ambient particulate matter pollution suggest a smaller effect on incidence of cardio vascular and respiratory disease than on mortality;124–126 the published work on consumption of seafood omega-3 fatty acids suggests an effect on ischaemic heart disease mortality but not on incidence of ischaemic heart disease.90
    Table 1 shows the sources of effect sizes per unit of exposure for each risk factor. Some effect sizes were based on meta-analyses of epidemiological studies. For several risk factors without recent systematic reviews or for which evidence had not recently been synthesised, new meta-analyses were done as part of GBD 2010. We used effect sizes that had been adjusted for measured confounders but not for factors along the causal pathway. For example, effect sizes for body-mass index were not adjusted for blood pressure. For some risk–outcome pairs, evidence is only available for the relative risk (RR) of morbidity or mortality. In these cases, we assumed that the reported RR would apply equally to morbidity or mortality, unless evidence suggested a differential effect. For example, studies of ambient particulate matter pollution suggest a smaller effect on incidence of cardio vascular and respiratory disease than on mortality;124–126 the published work on consumption of seafood omega-3 fatty acids suggests an effect on ischaemic heart disease mortality but not on incidence of ischaemic heart disease.90
  • Figure 3. Global risk factor ranks with 95% UI for all ages and sexes combined in 1990, and 2010, and percentage change
    Figure 3. Global risk factor ranks with 95% UI for all ages and sexes combined in 1990, and 2010, and percentage change
  • + 3

Topics: Disease burden (62%), Risk factor (54%), Years of potential life lost (53%) ...read more

8,301 Citations


Open accessJournal ArticleDOI: 10.1016/S0140-6736(14)60460-8
Marie Ng1, Tom P Fleming1, Margaret Robinson1, Blake Thomson1  +138 moreInstitutions (71)
30 Aug 2014-The Lancet
Abstract: Summary Background In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013. Methods We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19 244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Findings Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m 2 or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4–29·3) to 36·9% (36·3–37·4) in men, and from 29·8% (29·3–30·2) to 38·0% (37·5–38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9–24·7) of boys and 22·6% (21·7–23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7–8·6) to 12·9% (12·3–13·5) in 2013 for boys and from 8·4% (8·1–8·8) to 13·4% (13·0–13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Interpretation Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Funding Bill & Melinda Gates Foundation.

...read more

Topics: Overweight (61%), Global health (53%), Obesity (52%) ...read more

7,968 Citations


Journal ArticleDOI: 10.1016/S0140-6736(96)07492-2
24 May 1997-The Lancet
Abstract: Summary Background Plausible projections of future mortality and disability are a useful aid in decisions on priorities for health research, capital investment, and training. Rates and patterns of ill health are determined by factors such as socioeconomic development, educational attainment, technological developments, and their dispersion among populations, as well as exposure to hazards such as tobacco. As part of the Global Burden of Disease Study (GBD), we developed three scenarios of future mortality and disability for different age-sex groups, causes, and regions. Methods We used the most important disease and injury trends since 1950 in nine cause-of-death clusters. Regression equations for mortality rates for each cluster by region were developed from gross domestic product per person (in international dollars), average number of years of education, time (in years, as a surrogate for technological change), and smoking intensity, which shows the cumulative effects based on data for 47 countries in 1950–90. Optimistic, pessimistic, and baseline projections of the independent variables were made. We related mortality from detailed causes to mortality from a cause cluster to project more detailed causes. Based on projected numbers of deaths by cause, years of life lived with disability (YLDs) were projected from different relation models of YLDs to years of life lost (YLLs). Population projections were prepared from World Bank projections of fertility and the projected mortality rates. Findings Life expectancy at birth for women was projected to increase in all three scenarios; in established market economies to about 90 years by 2020. Far smaller gains in male life expectancy were projected than in females; in formerly socialist economies of Europe, male life expectancy may not increase at all. Worldwide mortality from communicable maternal, perinatal, and nutritional disorders was expected to decline in the baseline scenario from 17·2 million deaths in 1990 to 10·3 million in 2020. We projected that non-communicable disease mortality will increase from 28·1 million deaths in 1990 to 49·7 million in 2020. Deaths from injury may increase from 5·1 million to 8·4 million. Leading causes of disability-adjusted life years (DALYs) predicted by the baseline model were (in descending order): ischaemic heart disease, unipolar major depression, road-traffic accidents, cerebrovascular disease, chronic obstructive pulmonary disease, lower respiratory infections, tuberculosis, war injuries, diarrhoeal diseases, and HIV. Tobacco-attributable mortality is projected to increase from 3·0 million deaths in 1990 to 8·4 million deaths in 2020. Interpretation Health trends in the next 25 years will be determined mainly by the ageing of the world's population, the decline in age-specific mortality rates from communicable, maternal, perinatal, and nutritional disorders, the spread of HIV, and the increase in tobacco-related mortality and disability. Projections, by their nature, are highly uncertain, but we found some robust results with implications for health policy.

...read more

Topics: Years of potential life lost (64%), Mortality rate (60%), Life expectancy (59%) ...read more

6,922 Citations


Journal ArticleDOI: 10.1016/S0140-6736(12)61689-4
Christopher J L Murray1, Theo Vos2, Rafael Lozano1, Mohsen Naghavi1  +366 moreInstitutions (141)
15 Dec 2012-The Lancet
Abstract: Summary Background Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time. Methods We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost life expectancy at each age. YLDs were calculated as prevalence of 1160 disabling sequelae, by age, sex, and cause, and weighted by new disability weights for each health state. Neither YLLs nor YLDs were age-weighted or discounted. Uncertainty around cause-specific DALYs was calculated incorporating uncertainty in levels of all-cause mortality, cause-specific mortality, prevalence, and disability weights. Findings Global DALYs remained stable from 1990 (2·503 billion) to 2010 (2·490 billion). Crude DALYs per 1000 decreased by 23% (472 per 1000 to 361 per 1000). An important shift has occurred in DALY composition with the contribution of deaths and disability among children (younger than 5 years of age) declining from 41% of global DALYs in 1990 to 25% in 2010. YLLs typically account for about half of disease burden in more developed regions (high-income Asia Pacific, western Europe, high-income North America, and Australasia), rising to over 80% of DALYs in sub-Saharan Africa. In 1990, 47% of DALYs worldwide were from communicable, maternal, neonatal, and nutritional disorders, 43% from non-communicable diseases, and 10% from injuries. By 2010, this had shifted to 35%, 54%, and 11%, respectively. Ischaemic heart disease was the leading cause of DALYs worldwide in 2010 (up from fourth rank in 1990, increasing by 29%), followed by lower respiratory infections (top rank in 1990; 44% decline in DALYs), stroke (fifth in 1990; 19% increase), diarrhoeal diseases (second in 1990; 51% decrease), and HIV/AIDS (33rd in 1990; 351% increase). Major depressive disorder increased from 15th to 11th rank (37% increase) and road injury from 12th to 10th rank (34% increase). Substantial heterogeneity exists in rankings of leading causes of disease burden among regions. Interpretation Global disease burden has continued to shift away from communicable to non-communicable diseases and from premature death to years lived with disability. In sub-Saharan Africa, however, many communicable, maternal, neonatal, and nutritional disorders remain the dominant causes of disease burden. The rising burden from mental and behavioural disorders, musculoskeletal disorders, and diabetes will impose new challenges on health systems. Regional heterogeneity highlights the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account. Because of improved definitions, methods, and data, these results for 1990 and 2010 supersede all previously published Global Burden of Disease results. Funding Bill & Melinda Gates Foundation.

...read more

Topics: Disease burden (72%), Disability-adjusted life year (64%), Years of potential life lost (59%) ...read more

6,252 Citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
2021210
2020209
2019143
2018166
2017156

Top Attributes

Show by:

Topic's top 5 most impactful authors

Mohsen Naghavi

88 papers, 86.2K citations

Christopher J L Murray

84 papers, 106K citations

Theo Vos

65 papers, 59.2K citations

Ali H. Mokdad

56 papers, 35.3K citations

Alan D. Lopez

38 papers, 74.2K citations

Network Information
Related Topics (5)
Epidemiology

14.2K papers, 604.2K citations

81% related
Public health

158.3K papers, 3.9M citations

81% related
Cause of death

19.2K papers, 915.5K citations

79% related
Logistic regression

13.3K papers, 550.9K citations

78% related
Social determinants of health

24.6K papers, 660.8K citations

78% related