scispace - formally typeset
Search or ask a question

Showing papers on "Yeast published in 2003"


Journal ArticleDOI
TL;DR: The mechanisms by which one species/strain impacts on another in grape-wine ecosystems include: production of lytic enzymes, ethanol, sulphur dioxide and killer toxin/bacteriocin like peptides; nutrient depletion including removal of oxygen, and production of carbon dioxide; and release of cell autolytic components.

892 citations


Journal ArticleDOI
TL;DR: Transcriptional responses of the fission yeast Schizosaccharomyces pombe to various environmental stresses were explored and promoter motifs associated with some of the groups of coregulated genes were identified.
Abstract: We explored transcriptional responses of the fission yeast Schizosaccharomyces pombe to various environmental stresses. DNA microarrays were used to characterize changes in expression profiles of all known and predicted genes in response to five stress conditions: oxidative stress caused by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by temperature increase to 39°C, osmotic stress caused by sorbitol, and DNA damage caused by the alkylating agent methylmethane sulfonate. We define a core environmental stress response (CESR) common to all, or most, stresses. There was a substantial overlap between CESR genes of fission yeast and the genes of budding yeast that are stereotypically regulated during stress. CESR genes were controlled primarily by the stress-activated mitogen-activated protein kinase Sty1p and the transcription factor Atf1p. S. pombe also activated gene expression programs more specialized for a given stress or a subset of stresses. In general, these “stress-specific” responses were less dependent on the Sty1p mitogen-activated protein kinase pathway and may involve specific regulatory factors. Promoter motifs associated with some of the groups of coregulated genes were identified. We compare and contrast global regulation of stress genes in fission and budding yeasts and discuss evolutionary implications.

776 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the mouse Apg12-Apg5 conjugate forms a ∼800 kDa protein complex containing a novel WD-repeat protein, which is concluded to be the functional counterpart of the yeast Apg16.
Abstract: Macroautophagy is the major intracellular degradation system delivering cytoplasmic components to the lysosome/vacuole. We have shown that, in yeast and mammalian cells, the Apg12-Apg5 protein conjugate, which is formed by a ubiquitin-like system, is essential for autophagosome formation. In yeast, the Apg12-Apg5 conjugate interacts with a small coiled-coil protein, Apg16, to form a approximately 350 kDa multimeric complex. We demonstrate that the mouse Apg12-Apg5 conjugate forms a approximately 800 kDa protein complex containing a novel WD-repeat protein. Because the N-terminal region of this novel protein shows homology with yeast Apg16, we have designated it mouse Apg16-like protein (Apg16L). Apg16L, however, has a large C-terminal domain containing seven WD repeats that is absent from yeast Apg16. Apg16L interacts with both Apg5 and additional Apg16L monomers; neither interaction, however, depends on the WD-repeat domain. In conjunction with Apg12-Apg5, Apg16L associates with the autophagic isolation membrane for the duration of autophagosome formation. Because these features are similar to yeast Apg16, we concluded Apg16L is the functional counterpart of the yeast Apg16. We also found that membrane targeting of Apg16L requires Apg5 but not Apg12. Because WD-repeat proteins provide a platform for protein-protein interactions, the approximately 800 kDa complex is expected to function in autophagosome formation, further interacting with other proteins in mammalian cells.

728 citations


Journal ArticleDOI
TL;DR: It is demonstrated here the importance of morphogenetic conversions in C. albicans pathogenesis, and an engineered strain in which this developmental transition can be externally modulated both in vitro and in vivo is constructed.
Abstract: It is widely assumed that the ability of Candida albicans to switch between different morphologies is required for pathogenesis. However, most virulence studies have used mutants that are permanently locked into either the yeast or filamentous forms which are avirulent but unsuitable for discerning the role of morphogenetic conversions at the various stages of the infectious process. We have constructed a strain in which this developmental transition can be externally modulated both in vitro and in vivo. This was achieved by placing one copy of the NRG1 gene (a negative regulator of filamentation) under the control of a tetracycline-regulatable promoter. This modified strain was then tested in an animal model of hematogenously disseminated candidiasis. Mice injected with this strain under conditions permitting hyphal development succumbed to the infection, whereas all of the animals injected under conditions that inhibited this transition survived. Importantly, fungal burdens were almost identical in both sets of animals, indicating that, whereas filament formation appears to be required for the mortality resulting from a deep-seated infection, yeast cells play an important role early in the infectious process by extravasating and disseminating to the target organs. Moreover, these infecting Candida yeast cells still retained their pathogenic potential, as demonstrated by allowing this developmental transition to occur at various time points postinfection. We demonstrate here the importance of morphogenetic conversions in C. albicans pathogenesis. This engineered strain should provide a useful tool in unraveling the individual contributions of the yeast and filamentous forms at various stages of the infectious process.

638 citations


Journal ArticleDOI
TL;DR: The characterization of a large number of strains of different wine yeast species, isolated from spontaneous wine fermentations and included in the culture collection of the Basilicata University are reported.

597 citations


Journal ArticleDOI
TL;DR: Of the four probiotic treatments, the 40% protein diet supplemented with yeast produced the best growth performance and feed efficiency, suggesting that yeast is an appropriate growth-stimulating additive in tilapia cultivation.

537 citations


Journal ArticleDOI
TL;DR: This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins, and describes the molecular interactions among general regulators and pathway-specific factors.
Abstract: Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative β-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.

442 citations


Journal ArticleDOI
TL;DR: Overall patterns of N-terminal acetylated proteins and the orthologous genes possibly encoding NATs suggest that yeast and higher eukaryotes have the same systems for N- terminal acetylation.

437 citations


Journal ArticleDOI
29 Aug 2003-Science
TL;DR: The humanization of the glycosylation pathway in the yeast Pichia pastoris to secrete a human glycoprotein with uniform complex N-glycosylated structures is reported, which could become a tool for elucidating the structure-function relation of glycoproteins.
Abstract: We report the humanization of the glycosylation pathway in the yeast Pichia pastoris to secrete a human glycoprotein with uniform complex N-glycosylation. The process involved eliminating endogenous yeast glycosylation pathways, while properly localizing five active eukaryotic proteins, including mannosidases I and II, N-acetylglucosaminyl transferases I and II, and uridine 5'-diphosphate (UDP)-N-acetylglucosamine transporter. Targeted localization of the enzymes enabled the generation of a synthetic in vivo glycosylation pathway, which produced the complex human N-glycan N-acetylglucosamine2-mannose3-N-acetylglucosamine2 (GlcNAc2Man3GlcNAc2). The ability to generate human glycoproteins with homogeneous N-glycan structures in a fungal host is a step toward producing therapeutic glycoproteins and could become a tool for elucidating the structure-function relation of glycoproteins.

434 citations


Journal ArticleDOI
TL;DR: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure.
Abstract: Aim: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. Methods and Results: Chemical and enzymatic methods were used to determine levels of β-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between β-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of β-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. Significance and Impact of the Study: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of β-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.

394 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xyloses isomerase rather than via the xylos reductase/xylitol-dehydrogenase pathway found in xylosity-metabolising yeasts.
Abstract: Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30 degrees C, were 0.3-1.1 micromol min(-1) (mg protein)(-1), with a Km for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass)(-1) h(-1), respectively.

Journal ArticleDOI
TL;DR: It is demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells, consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleoic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects ofanol.
Abstract: In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Δ9Z-C16:1) and oleic acid (Δ9Z-C18:1), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C16:0) and stearic acid (C18:0), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Δ9 and Δ11) and substrate chain-length preferences (i.e., C16:0 and C18:0); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Δ11Z-C18:1), whereas neither Δ11Z-C16:1 nor palmitoleic acid (Δ9Z-C16:1) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.

Journal ArticleDOI
01 Dec 2003-Yeast
TL;DR: It was shown that, during fermentation of a synthetic medium mimicking a natural must in which growth arrest was caused by nitrogen exhaustion, entry into the stationary phase triggered major transcriptional reprogramming, and many TOR target genes involved in nitrogen utilization or other functions are induced at this stage, suggesting that this signalling pathway plays a critical role in changes in gene expression in response to nitrogen depletion.
Abstract: The transcriptome of a wine yeast was monitored throughout an alcoholic fermentation under conditions mimicking an enological environment. Major changes in gene expression occurred during fermentation, affecting more than 2000 genes, as the yeast adapted to changing nutritional, environmental and physiological conditions. The genes of many pathways are regulated in a highly coordinated manner, and genes involved in the key metabolic pathways of fermentation are strongly expressed. We showed that, during fermentation of a synthetic medium mimicking a natural must in which growth arrest was caused by nitrogen exhaustion, entry into the stationary phase triggered major transcriptional reprogramming. Many TOR target genes involved in nitrogen utilization or other functions are induced at this stage, suggesting that this signalling pathway plays a critical role in changes in gene expression in response to nitrogen depletion. Entry into stationary phase is a key physiological event and is followed by a general stress response. The superimposition of multiple stresses, including starvation and ethanol stress, gives rise to a unique stress response, involving hundreds of genes encoding proteins involved in various cellular processes, many of unknown function. Copyright © 2003 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The analysis of 53 commercial and laboratory Saccharomyces cerevisiae yeast strains showed a clear improvement of interdelta analysis using the newly designed primers.
Abstract: A new primer pair (delta12–delta21) for polymerase chain reaction-based yeast typing was designed using the yeast genome sequence. The specificity of this primer pair was checked by the comparison of the electrophoresis pattern with a virtual profile calculated from Blast data. The analysis of 53 commercial and laboratory Saccharomyces cerevisiae yeast strains showed a clear improvement of interdelta analysis using the newly designed primers.

Journal ArticleDOI
TL;DR: The engineering of a Saccharomyces cerevisiae strain able to utilize the pentose sugar l-arabinose for growth and to ferment it to ethanol is described, which should be useful for efficient fermentation of hexoses and pentoses in cellulosic biomass hydrolysates.
Abstract: Metabolic engineering is a powerful method to improve, redirect, or generate new metabolic reactions or whole pathways in microorganisms. Here we describe the engineering of a Saccharomyces cerevisiae strain able to utilize the pentose sugar L-arabinose for growth and to ferment it to ethanol. Expanding the substrate fermentation range of S. cerevisiae to include pentoses is important for the utilization of this yeast in economically feasible biomass-to-ethanol fermentation processes. After overexpression of a bacterial L-arabinose utilization pathway consisting of Bacillus subtilis AraA and Escherichia coli AraB and AraD and simultaneous overexpression of the L-arabinose-transporting yeast galactose permease, we were able to select an L-arabinose-utilizing yeast strain by sequential transfer in L-arabinose media. Molecular analysis of this strain, including DNA microarrays, revealed that the crucial prerequisite for efficient utilization of L-arabinose is a lowered activity of L-ribulokinase. Moreover, high L-arabinose uptake rates and enhanced transaldolase activities favor utilization of L-arabinose. With a doubling time of about 7.9 h in a medium with L-arabinose as the sole carbon source, an ethanol production rate of 0.06 to 0.08 g of ethanol per g (dry weight). h(-1) under oxygen-limiting conditions, and high ethanol yields, this yeast strain should be useful for efficient fermentation of hexoses and pentoses in cellulosic biomass hydrolysates.

Journal ArticleDOI
TL;DR: It is suggested that the ShMTP1 proteins are members of the CDF family involved in conferring Mn2+ tolerance and that at least one of these proteins confers tolerance by sequestering Mn2+.
Abstract: The yeast Saccharomyces cerevisiae expressing a cDNA library prepared from Stylosanthes hamata was screened for enhanced Mn2+ tolerance. From this screen, we identified four related cDNAs that encode membrane-bound proteins of the cation diffusion facilitator (CDF) family. One of these cDNAs (ShMTP1) was investigated in detail and found to confer Mn2+ tolerance to yeast by internal sequestration rather than by efflux of Mn2+. Expression of ShMTP1 in a range of yeast mutants suggested that it functions as a proton:Mn2+ antiporter on the membrane of an internal organelle. Similarly, when expressed in Arabidopsis, ShMTP1 conferred Mn2+ tolerance through internal sequestration. The ShMTP1 protein fused to green fluorescent protein was localized to the tonoplast of Arabidopsis cells but appeared to localize to the endoplasmic reticulum of yeast. We suggest that the ShMTP1 proteins are members of the CDF family involved in conferring Mn2+ tolerance and that at least one of these proteins (ShMTP1) confers tolerance by sequestering Mn2+ into internal organelles.

Journal ArticleDOI
TL;DR: To facilitate NADPH regeneration, the recently discovered gene GDP1 was expressed, which codes for a fungal NADP+-dependent d-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) (EC 1.2.1.13), in an S. cerevisiae strain with the d-xylose pathway.
Abstract: Pentose fermentation to ethanol with recombinant Saccharomyces cerevisiae is slow and has a low yield. A likely reason for this is that the catabolism of the pentoses d-xylose and l-arabinose through the corresponding fungal pathways creates an imbalance of redox cofactors. The process, although redox neutral, requires NADPH and NAD+, which have to be regenerated in separate processes. NADPH is normally generated through the oxidative part of the pentose phosphate pathway by the action of glucose-6-phosphate dehydrogenase (ZWF1). To facilitate NADPH regeneration, we expressed the recently discovered gene GDP1, which codes for a fungal NADP+-dependent d-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) (EC 1.2.1.13), in an S. cerevisiae strain with the d-xylose pathway. NADPH regeneration through an NADP-GAPDH is not linked to CO2 production. The resulting strain fermented d-xylose to ethanol with a higher rate and yield than the corresponding strain without GDP1; i.e., the levels of the unwanted side products xylitol and CO2 were lowered. The oxidative part of the pentose phosphate pathway is the main natural path for NADPH regeneration. However, use of this pathway causes wasteful CO2 production and creates a redox imbalance on the path of anaerobic pentose fermentation to ethanol because it does not regenerate NAD+. The deletion of the gene ZWF1 (which codes for glucose-6-phosphate dehydrogenase), in combination with overexpression of GDP1 further stimulated d-xylose fermentation with respect to rate and yield. Through genetic engineering of the redox reactions, the yeast strain was converted from a strain that produced mainly xylitol and CO2 from d-xylose to a strain that produced mainly ethanol under anaerobic conditions.

Journal ArticleDOI
TL;DR: In this paper, it was shown that Schwann cells do not require a cell-size checkpoint to maintain a constant cell size distribution, as, unlike yeast, large and small SchwANN cells grow at the same rate, which depends on the concentration of extracellular growth factors.
Abstract: It is widely believed that cell-size checkpoints help to coordinate cell growth and cell-cycle progression, so that proliferating eukaryotic cells maintain their size. There is strong evidence for such size checkpoints in yeasts, which maintain a constant cell-size distribution as they proliferate, even though large yeast cells grow faster than small yeast cells. Moreover, when yeast cells are shifted to better or worse nutrient conditions, they alter their size threshold within one cell cycle. Populations of mammalian cells can also maintain a constant size distribution as they proliferate, but it is not known whether this depends on cell-size checkpoints. We show that proliferating rat Schwann cells do not require a cell-size checkpoint to maintain a constant cell-size distribution, as, unlike yeasts, large and small Schwann cells grow at the same rate, which depends on the concentration of extracellular growth factors. In addition, when shifted from serum-free to serum-containing medium, Schwann cells take many divisions to increase their size to that appropriate to the new condition, suggesting that they do not have cell-size checkpoints similar to those in yeasts. Proliferating Schwann cells and yeast cells seem to use different mechanisms to coordinate their growth with cell-cycle progression. Whereas yeast cells use cell-size checkpoints, Schwann cells apparently do not. It seems likely that many mammalian cells resemble Schwann cells in this respect.

Journal ArticleDOI
TL;DR: Functional and morphological analysis in autophagy-defective yeast strains lacking Apg4/Aut2 revealed that human autophagins-1 and -3 were able to complement the deficiency in the yeast protease, restoring the phenotypic and biochemical characteristics of autophagic cells.

Journal ArticleDOI
TL;DR: In this paper, high sugar stress upregulated the glycolytic and pentose phosphate pathway genes in S. cerevisiae, and genes involved in de novo biosynthesis of purines, pyrimidines, histidine and lysine were downregulated.
Abstract: The transcriptional response of laboratory strains of Saccharomyces cerevisiae to salt or sorbitol stress has been well studied. These studies have yielded valuable data on how the yeast adapts to these stress conditions. However, S. cerevisiae is a saccharophilic fungus and in its natural environment this yeast encounters high concentrations of sugars. For the production of dessert wines, the sugar concentration may be as high as 50% (w/v). The metabolic pathways in S. cerevisiae under these fermentation conditions have not been studied and the transcriptional response of this yeast to sugar stress has not been investigated. High-density DNA microarrays showed that the transcription of 589 genes in an industrial strain of S. cerevisiae were affected more than two-fold in grape juice containing 40% (w/v) sugars (equimolar amounts of glucose and fructose). High sugar stress up-regulated the glycolytic and pentose phosphate pathway genes. The PDC6 gene, previously thought to encode a minor isozyme of pyruvate decarboxylase, was highly induced under these conditions. Gene expression profiles indicate that the oxidative and non-oxidative branches of the pentose phosphate pathway were up-regulated and might be used to shunt more glucose-6-phosphate and fructose-6-phosphate, respectively, from the glycolytic pathway into the pentose phosphate pathway. Structural genes involved in the formation of acetic acid from acetaldehyde, and succinic acid from glutamate, were also up-regulated. Genes involved in de novo biosynthesis of purines, pyrimidines, histidine and lysine were down-regulated by sugar stress.

Journal ArticleDOI
TL;DR: A method for the global analysis of yeast intracellular metabolites, based on electrospray mass spectrometry (ES-MS), has been developed and may be used for comparative analysis and screening of metabolite profiles of yeast strains and mutants under controlled conditions in order to elucidate gene function via metabolomics.

Journal ArticleDOI
TL;DR: This is the first report of the reconstruction of a biochemical pathway in a heterologous host to produce resveratrol, which acts as an antioxidant and anti-mutagen and has the ability to induce specific enzymes that metabolise carcinogenic substances.
Abstract: The stilbene resveratrol is a stress metabolite produced by Vitis vinifera grapevines during fungal infection, wounding or UV radiation. Resveratrol is synthesised particularly in the skins of grape berries and only trace amounts are present in the fruit flesh. Red wine contains a much higher resveratrol concentration than white wine, due to skin contact during fermentation. Apart from its antifungal characteristics, resveratrol has also been shown to have cancer chemopreventive activity and to reduce the risk of coronary heart disease. It acts as an antioxidant and anti-mutagen and has the ability to induce specific enzymes that metabolise carcinogenic substances. The objective of this pilot study was to investigate the feasibility of developing wine yeasts with the ability to produce resveratrol during fermentation in both red and white wines, thereby increasing the wholesomeness of the product. To achieve this goal, the phenylpropanoid pathway in Saccharomyces cerevisiae would have to be introduced to produce p-coumaroyl-CoA, one of the substrates required for resveratrol synthesis. The other substrate for resveratrol synthase, malonyl-CoA, is already found in yeast and is involved in de novo fatty-acid biosynthesis. We hypothesised that production of p-coumaroyl-CoA and resveratrol can be achieved by co-expressing the coenzyme-A ligase-encoding gene (4CL216) from a hybrid poplar and the grapevine resveratrol synthase gene (vst1) in laboratory strains of S. cerevisiae. This yeast has the ability to metabolise p-coumaric acid, a substance already present in grape must. This compound was therefore added to the synthetic media used for the growth of laboratory cultures. Transformants expressing both the 4CL216 and vst1 genes were obtained and tested for production of resveratrol. Following beta-glucosidase treatment of organic extracts for removal of glucose moieties that are typically bound to resveratrol, the results showed that the yeast transformants had produced the resveratrol beta-glucoside, piceid. This is the first report of the reconstruction of a biochemical pathway in a heterologous host to produce resveratrol.

Journal ArticleDOI
TL;DR: Results indicate that S.cerevisiae yeast was probably responsible for wine fermentation by at least 3150 B.C.C, which has major implications for the evolution of bread and beer yeasts.
Abstract: Saccharomyces cerevisiae is the principal yeast used in modern fermentation processes, including winemaking, breadmaking, and brewing. From residue present inside one of the earliest known wine jars from Egypt, we have extracted, amplified, and sequenced ribosomal DNA from S. cerevisiae. These results indicate that this organism was probably responsible for wine fermentation by at least 3150 B.C. This inference has major implications for the evolution of bread and beer yeasts, since it suggests that S. cerevisiae yeast, which occurs naturally on the surface bloom of grapes, was also used as an inoculum to ferment cereal products.

Journal ArticleDOI
14 Aug 2003-Gene
TL;DR: The evidence points to a role for the Ccr4-Not complex as a regulatory platform that senses nutrient levels and stress, including RNA degradation and transcription initiation.

Patent
23 Jan 2003
TL;DR: In this paper, a nucleic acid sequence encoding eukaryotic xylose isomerases and xylulose kinases was obtained from an anaerobic yeast or a filamentous fungus.
Abstract: The present invention relates to host cells transformed with a nucleic acid sequence encoding a eukaryotic xylose isomerase obtainable from an anaerobic fungus. When expressed, the sequence encoding the xylose isomerase confers to the host cell the ability to convert xylose to xylulose which may be further metabolised by the host cell. Thus, the host cell is capable of growth on xylose as carbon source. The host cell preferably is a eukaryotic microorganism such as a yeast or a filamentous fungus. The invention further relates to processes for the production of fermentation products such as ethanol, in which a host cell of the invention uses xylose for growth and for the production of the fermentation product. The invention further relates to nucleic acid sequences encoding eukaryotic xylose isomerases and xylulose kinases as obtainable from anaerobic fungi.

Journal ArticleDOI
TL;DR: A fungi-specific PCR-denaturing gradient gel electrophoresis system was established to monitor the development of the yeast biota, and randomly amplified polymorphic DNA-PCR analysis revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomers uvarum in sourdoughs.
Abstract: Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40°C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.

Journal ArticleDOI
TL;DR: The potential of 89 culturable cold-adapted isolates from uncontaminated habitats, including 61 bacterial and 28 yeast strains, to utilize representative fractions of petroleum hydrocarbons for growth and to produce various enzymes at 10°C was investigated.
Abstract: The potential of 89 culturable cold-adapted isolates from uncontaminated habitats, including 61 bacterial and 28 yeast strains, to utilize representative fractions of petroleum hydrocarbons (n-alkanes, monoaromatic and polycyclic aromatic hydrocarbons) for growth and to produce various enzymes at 10 degrees C was investigated. The efficiency of bacterial and yeast strains was compared. The growth temperature range of the yeast strains was significantly smaller than that of the bacterial strains. Sixty percent of the yeasts but only 8% of the bacteria could be classified as true psychrophiles, showing no growth above 20 degrees C. A high percentage (89%) of the yeast strains showed lipase activity. More than one-third of the 61 bacterial strains produced amylase, beta-lactamase, beta-galactosidase or lipase; more than two-thirds were protease producers. Only 6% of the bacterial strains but 79% of the yeast strains utilized n-hexadecane for growth; 13% of the bacterial strains and 21-32% of the yeast strains utilized phenol, phenanthrene or anthracene for growth. Only four yeast strains but none of the bacterial strains could grow with all hydrocarbons tested. The biodegradation of phenol was investigated in fed-batch cultures at 10 degrees C. Three yeast strains degraded phenol concentrations as high as 10 mM (one strain) or 12.5 mM (two strains). Of eight bacterial strains, two strains degraded up to 10 mM phenol. The optimum temperature for phenol degradation was 20 degrees C for all eight bacterial strains and for two yeast strains. Biodegradation by five yeast strains was optimal at 10 degrees C and faster at 1 degrees C than at 20 degrees C. All phenol-degrading strains produced catechol 1,2 dioxygenase activity.

Journal ArticleDOI
24 Dec 2003-Gene
TL;DR: Findings indicate that BI-1 homologs exist in multiple eukaryotic species, providing cytoprotection against diverse stimuli, thus implying thatBI-1 regulates evolutionary conserved mechanisms of stress resistance that are germane to both plants and animals.

Journal ArticleDOI
TL;DR: Two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA are developed, which effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria.
Abstract: Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria.

Journal ArticleDOI
01 May 2003-RNA
TL;DR: A biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins is used to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10, and Trm10p is responsible in vivo for most if not all m( 1)G (9) modification of tRNAs.
Abstract: Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.