scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: Two cDNAs (LeIRT1 and LeIRT2) are isolated from a library constructed from roots of iron-deficient tomato plants, using the Arabidopsis iron transporter cDNA, IRT1, as a probe and, surprisingly, both genes are arranged in tandem with a tail-to-tail orientation.
Abstract: Although iron deficiency poses severe nutritional problems to crop plants, to date iron transporters have only been characterized from the model plant Arabidopsis thaliana. To extend our molecular knowledge of Fe transport in crop plants, we have isolated two cDNAs (LeIRT1 and LeIRT2) from a library constructed from roots of iron-deficient tomato (Lycopersicon esculentum) plants, using the Arabidopsis iron transporter cDNA, IRT1, as a probe. Their deduced polypeptides display 64% and 62% identical amino acid residues to the IRT1 protein, respectively. Transcript level analyses revealed that both genes were predominantly expressed in roots. Transcription of LeIRT2 was unaffected by the iron status of the plant, while expression of LeIRT1 was strongly enhanced by iron limitation. The growth defect of an iron uptake-deficient yeast (Saccharomyces cerevisiae) mutant was complemented by LeIRT1 and LeIRT2 when ligated to a yeast expression plasmid. Transport assays revealed that iron uptake was restored in the transformed yeast cells. This uptake was temperature-dependent and saturable, and Fe2+ rather than Fe3+ was the preferred substrate. A number of divalent metal ions inhibited Fe2+ uptake when supplied at 100-fold or 10-fold excess. Manganese, zinc and copper uptake-deficient yeast mutants were also rescued by the two tomato cDNAs, suggesting that their gene products have a broad substrate range. The gene structure was determined by polymerase chain reaction experiments and, surprisingly, both genes are arranged in tandem with a tail-to-tail orientation.

220 citations

Journal ArticleDOI
TL;DR: The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process and suggests the activity of feruloyl esterases produced by brewer's yeast is suggested.
Abstract: The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.

220 citations

Journal ArticleDOI
TL;DR: A method for the global analysis of yeast intracellular metabolites, based on electrospray mass spectrometry (ES-MS), has been developed and may be used for comparative analysis and screening of metabolite profiles of yeast strains and mutants under controlled conditions in order to elucidate gene function via metabolomics.

220 citations

Journal ArticleDOI
TL;DR: A novel strategy has been developed for identifying yeast strain employing polymerase chain reaction technology using customised oligonucleotides, some regions of the yeast genome between δ elements are amplified to give an 'amplified' sequence polymorphisml characteristic of the strains.
Abstract: Commonly used techniques for the identification of industrial yeast strains are usually time-consuming and cumbersome. Moreover, some of these methods may give ambiguous results. A novel strategy has been developed for identifying yeast strain employing polymerase chain reaction technology. Using customised oligonucleotides, some regions of the yeast genome between δ elements are amplified to give an ‘amplified’ sequence polymorphisml (Skolnick and Wallace 1988) characteristic of the strains. With this technique it is possible to identify individual strains of Saccharomyces cerevisiae.

220 citations

Journal ArticleDOI
TL;DR: The glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project was elucidated and it was found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae.
Abstract: In a quantitative comparative study, we elucidated the glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project. The metabolic networks of these different species were first established by (13)C-labeling data and the inventory of the genomes. This information was subsequently used for metabolic-flux ratio analysis to quantify the intracellular carbon flux distributions in these yeast species. Firstly, we found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae. Exceptions were the mitochondrial origin of aspartate biosynthesis in Yarrowia lipolytica and the cytosolic origin of alanine biosynthesis in S. kluyveri. Secondly, the control of flux through the TCA cycle was inversely correlated with the ethanol production rate, with S. cerevisiae being the yeast with the highest ethanol production capacity. The classification between respiratory and respiro-fermentative metabolism, however, was not qualitatively exclusive but quantitatively gradual. Thirdly, the flux through the pentose phosphate (PP) pathway was correlated to the yield of biomass, suggesting a balanced production and consumption of NADPH. Generally, this implies the lack of active transhydrogenase-like activities in hemiascomycetous yeasts under the tested growth condition, with Pichia angusta as the sole exception. In the latter case, about 40% of the NADPH was produced in the PP pathway in excess of the requirements for biomass production, which strongly suggests the operation of a yet unidentified mechanism for NADPH reoxidation in this species. In most yeasts, the PP pathway activity appears to be driven exclusively by the demand for NADPH.

220 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968