scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: ABFI and BXLI correspond to a previously purified alpha-L-arabinofuranosidase and a beta-xylosidase from T. reesei, respectively, as confirmed by partial amino acid sequencing of the Trichoderma-produced enzymes.
Abstract: A cDNA expression library of Trichoderma reesei RutC-30 was constructed in the yeast Saccharomyces cerevisiae Two genes, abf1 and bxl1, were isolated by screening the yeast library for extracellular alpha-L-arabinofuranosidase activity with the substrate p-nitrophenyl-alpha-L-arabinofuranoside The genes abf1 and bxl1 encode 500 and 758 amino acids, respectively, including the signal sequences The deduced amino acid sequence of ABFI displays high-level similarity to the alpha-L-arabinofuranosidase B of Aspergillus niger, and the two can form a new family of glycosyl hydrolases The deduced amino acid sequence of BXLI shows similarities to the beta-glucosidases grouped in family 3 The yeast-produced enzymes were tested for enzymatic activities against different substrates ABFI released L-arabinose from p-nitrophenyl-alpha-L-arabinofuranoside and arabinoxylans and showed some beta-xylosidase activity toward p-nitrophenyl-beta-D-xylopyranoside BXLI did not release L-arabinose from arabinoxylan It showed alpha-L-arabinofuranosidase, alpha-L-arabinopyranosidase, and beta-xylosidase activities against p-nitrophenyl-alpha-L-arabinofuranosidase, p-nitrophenyl-alpha-L-arabinopyranoside, and p-nitrophenyl-beta-D- xylopyranoside, respectively, with the last activity being the highest It was also able to hydrolyze xylobiose and slowly release xylose from polymeric xylan ABFI and BXLI correspond to a previously purified alpha-L-arabinofuranosidase and a beta-xylosidase from T reesei, respectively, as confirmed by partial amino acid sequencing of the Trichoderma-produced enzymes Both enzymes produced in yeasts displayed hydrolytic properties similar to those of the corresponding enzymes purified from T reesei

188 citations

Journal ArticleDOI
04 Aug 1988-Nature
TL;DR: A crucial role of intracellular pH in the growth control of animal cells is supported and a more specific approach which involves expressing the gene for the yeast plasma membrane H+-ATPase7 in fibroblasts is introduced, suggesting that the yeast ATPase gene behaves as an oncogene in mammalian cells.
Abstract: A common early response of eukaryotic cells to stimuli which activate their proliferation is an increase in intracellular pH (ref. 1). In animal cells this is caused by the activation of an Na+/H+ exchange system2–5; in fungi and plants an H+-pumping ATPase6 is involved. The critical question is whether this intracellular alkalinization is merely coincident with the activation of cell proliferation or whether it is a regulatory signal2. To increase intracellular pH bypassing the usual physiological stimuli (growth factors, hormones etc.) alkaline media or ammonia have been used in the past2. Both approaches suffer from long-term toxicity effects and cannot be used in tumorigenic assays with whole organisms. We introduce here a more specific approach which involves expressing the gene for the yeast plasma membrane H+-ATPase7 in fibroblasts. The resulting cells have an elevated intracellular pH and acquire tumorigenic properties, suggesting that the yeast ATPase gene behaves as an oncogene in mammalian cells. These experiments support a crucial role of intracellular pH in the growth control of animal cells.

188 citations

Journal ArticleDOI
TL;DR: The results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophile transporters in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.
Abstract: Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp− strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.

188 citations

Journal ArticleDOI
TL;DR: The data presented here suggest that the engineered yeast producing artemisinic acid suffers oxidative and drug-associated stresses, and the use of plant-derived transporters and optimizing AMO activity may improve the yield of artemisic acid production in the genetically engineered yeast.
Abstract: Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast microarray further demonstrated that the induction of drug-resistant genes such as ABC transporters and major facilitator superfamily (MSF) genes is the primary cellular stress-response; in addition, oxidative and osmotic stress responses were observed in the engineered yeast. The data presented here suggest that the engineered yeast producing artemisinic acid suffers oxidative and drug-associated stresses. The use of plant-derived transporters and optimizing AMO activity may improve the yield of artemisinic acid production in the engineered yeast.

188 citations

Journal ArticleDOI
01 May 2003-RNA
TL;DR: A biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins is used to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10, and Trm10p is responsible in vivo for most if not all m( 1)G (9) modification of tRNAs.
Abstract: Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.

188 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968