scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: As additional deletion of the glucose sensor gene SNF3 partially restored growth on hexoses, the data indicate the existence of even more proteins able to transport hexoses in yeast.

612 citations

Journal ArticleDOI
TL;DR: The regulation of AtNHX1 by NaCl and the ability of the plant gene to suppress the yeast nhx1 mutant suggest that the mechanism by which cations are detoxified in yeast and plants may be similar.
Abstract: Overexpression of the Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1) confers salt tolerance to the salt-sensitive ena1 mutant of Saccharomyces cerevisiae. Suppression of salt sensitivity requires two ion transporters, the Gef1 Cl- channel and the Nhx1 Na+/H+ exchanger. These two proteins colocalize to the prevacuolar compartment of yeast and are thought to be required for optimal acidification of this compartment. Overexpression of AtNHX1, the plant homologue of the yeast Na+/H+ exchanger, suppresses some of the mutant phenotypes of the yeast nhx1 mutant. Moreover, the level of AtNHX1 mRNA in Arabidopsis is increased in the presence of NaCl. The regulation of AtNHX1 by NaCl and the ability of the plant gene to suppress the yeast nhx1 mutant suggest that the mechanism by which cations are detoxified in yeast and plants may be similar.

612 citations

Journal ArticleDOI
TL;DR: The data demonstrate a mechanism by which C. albicans shape alone directly contributes to the method by which phagocytes recognize the fungus, and shows that yeast cell wall β‐glucan is largely shielded from Dectin‐1 by outer wall components.
Abstract: The ability of Candida albicans to rapidly and reversibly switch between yeast and filamentous morphologies is crucial to pathogenicity, and it is thought that the filamentous morphology provides some advantage during interaction with the mammalian immune system. Dectin-1 is a receptor that binds β-glucans and is important for macrophage phagocytosis of fungi. The receptor also collaborates with Toll-like receptors for inflammatory activation of phagocytes by fungi. We show that yeast cell wall β-glucan is largely shielded from Dectin-1 by outer wall components. However, the normal mechanisms of yeast budding and cell separation create permanent scars which expose sufficient β-glucan to trigger antimicrobial responses through Dectin-1, including phagocytosis and activation of reactive oxygen production. During filamentous growth, no cell separation or subsequent β-glucan exposure occurs, and the pathogen fails to activate Dectin-1. The data demonstrate a mechanism by which C. albicans shape alone directly contributes to the method by which phagocytes recognize the fungus.

605 citations

Journal ArticleDOI
TL;DR: Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size, which can enhance the efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells.
Abstract: Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

600 citations

Journal ArticleDOI
TL;DR: The characterization of a large number of strains of different wine yeast species, isolated from spontaneous wine fermentations and included in the culture collection of the Basilicata University are reported.

597 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968