scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on recent advances on the roles of cortical tags, GTPases and the cytoskeleton in the generation and maintenance of cell polarity in yeast.

175 citations

Journal ArticleDOI
TL;DR: Results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast.
Abstract: Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K(+) concentration and decreasing intracellular Na(+) during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K(+) to Na(+) ratios showed that transgenic lines were able to retain more K(+) than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast.

175 citations

Journal ArticleDOI
TL;DR: Results from this experiment demonstrated that yeast and fungal cultures could influence ruminal fermentation and microbial populations.

175 citations

Journal ArticleDOI
TL;DR: It is shown that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level, and the results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cad mium resistance in yeast involves cotransport of cadmum with glutathion derivatives.
Abstract: A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was recently found to transport glutathione S-conjugates across membranes. Here we show that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level. Transport of S-(2,4-dinitrobenzene)-glutathione into isolated yeast microsomal vesicles is strongly reduced in the DTY168 mutant and this transport is restored to wild-type level in mutant cells expressing MRP cDNA. We find in cell fractionation experiments that YCF1 is mainly localized in the vacuolar membrane in yeast, whereas MRP is associated both with the vacuolar membrane and with other internal membranes in the transformed yeast cells. Our results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cadmium resistance in yeast involves cotransport of cadmium with glutathione derivatives.

175 citations

Journal ArticleDOI
TL;DR: In this article, a review sums up the results of studies of physiological growth characteristics of the yeast Yarrowia lipolytica cultured in the presence of diverse carbon sources (n-alkanes, glucose, and glycerol) and super high synthesis of organic acids, which was performed at the Skryabin Institute of Biochemistry and Physiology of Microorganisms.
Abstract: The review sums up the results of studies of (1) physiological growth characteristics of the yeast Yarrowia lipolytica cultured in the presence of diverse carbon sources (n-alkanes, glucose, and glycerol) and (2) superhigh synthesis of organic acids, which was performed at the Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences. Microbiological processes of obtaining α-ketoglutaric, pyruvic, isocitric, and citric acids are discussed.

174 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968