scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: The energy requirements, kinetics, substrate specificity, and inhibitor profile of YCF1-mediated transport demonstrate that the vacuolar glutathione conjugate pump of yeast bears a strong mechanistic resemblance to the MRP1-encoded transporter of mammalian cells and the cognate, but as yet molecularly undefined, function of plant cells.

441 citations

Journal ArticleDOI
TL;DR: Work in yeast and filamentous fungi has revealed a mechanism for glucose repression in eukaryotes that is different from that found in bacteria, and zinc finger proteins play a key role in mediating this response.

441 citations

Journal ArticleDOI
TL;DR: PCR-DGGE of a portion of the 26S rRNA gene was shown to distinguish most yeast genera associated with the production of wine and represents an attractive alternative to traditional plating schemes for analysis of the microbial successions inherent in the fermentation of wine.
Abstract: We present a method to directly characterize the yeast diversity present in wine fermentations by employing denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 26S ribosomal RNA (rRNA) genes. PCR-DGGE of a portion of the 26S rRNA gene was shown to distinguish most yeast genera associated with the production of wine. With this method the microbial dynamics in several model wine fermentations were profiled. PCR-DGGE provided a qualitative assessment of the yeast diversity in these fermentations accurately identifying populations as low as 1000 cells ml−1. PCR-DGGE represents an attractive alternative to traditional plating schemes for analysis of the microbial successions inherent in the fermentation of wine.

439 citations

Book
15 Feb 1997
TL;DR: The environmental stress response: a common yeast response to diverse environmental stresses.
Abstract: The environmental stress response: a common yeast response to diverse environmental stresses.- The yeast response to heat shock.- The osmotic stress response of Saccharomyces cerevisiae.- Ion homeostasis in Saccharomyces cerevisiae under NaCl stress.- Oxidative stress responses in yeast.- From feast to famine adaptation to nutrient availability in yeast.

438 citations

Journal ArticleDOI
TL;DR: A novel gene with sequence similarity to plant expansins, isolated from the cellulolytic fungus Trichoderma reesei, is described, which has an N-terminal fungal type cellulose binding domain connected by a linker region to the expansin-like domain.
Abstract: Plant cell wall proteins called expansins are thought to disrupt hydrogen bonding between cell wall polysaccharides without hydrolyzing them. We describe here a novel gene with sequence similarity to plant expansins, isolated from the cellulolytic fungus Trichoderma reesei. The protein named swollenin has an N-terminal fungal type cellulose binding domain connected by a linker region to the expansin-like domain. The protein also contains regions similar to mammalian fibronectin type III repeats, found for the first time in a fungal protein. The swollenin gene is regulated in a largely similar manner as the T. reesei cellulase genes. The biological role of SWOI was studied by disrupting the swo1 gene from T. reesei. The disruption had no apparent effect on the growth rate on glucose or on different cellulosic carbon sources. Non-stringent Southern hybridization of Trichoderma genomic DNA with swo1 showed the presence of other swollenin-like genes, which could substitute for the loss of SWOI in the disruptant. The swollenin gene was expressed in yeast and Aspergillus niger var. awamori. Activity assays on cotton fibers and filter paper were performed with concentrated SWOI-containing yeast supernatant that disrupted the structure of the cotton fibers without detectable formation of reducing sugars. It also weakened filter paper as assayed by an extensometer. The SWOI protein was purified from A. niger var. awamori culture supernatant and used in an activity assay with Valonia cell walls. It disrupted the structure of the cell walls without producing detectable amounts of reducing sugars.

438 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968