scispace - formally typeset
Search or ask a question
Topic

Yeast

About: Yeast is a research topic. Over the lifetime, 31777 publications have been published within this topic receiving 868967 citations. The topic is also known as: yeasts.


Papers
More filters
Journal ArticleDOI
TL;DR: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure.
Abstract: Aim: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. Methods and Results: Chemical and enzymatic methods were used to determine levels of β-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between β-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of β-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. Significance and Impact of the Study: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of β-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.

394 citations

Journal ArticleDOI
TL;DR: This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates and suggests adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation as an alternative approach to detoxification.
Abstract: One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.

394 citations

Journal ArticleDOI
TL;DR: Evidence is provided that a gene for the plant high affinity NH4+ uptake has been identified and sequence homologies to genes of bacterial and animal origin indicate that this type of transporter is conserved over a broad range of organisms.
Abstract: Despite the important role of the ammonium ion in metabolism, i.e. as a form of nitrogen that is taken up from the soil by microorganisms and plants, little is known at the molecular level about its transport across biomembranes. Biphasic uptake kinetics have been observed in roots of several plant species. To study such transport processes, a mutant yeast strain that is deficient in two NH4+ uptake systems was used to identify a plant NH4+ transporter. Expression of an Arabidopsis cDNA in the yeast mutant complemented the uptake deficiency. The cDNA AMT1 contains an open reading frame of 501 amino acids and encodes a highly hydrophobic protein with 9-12 putative membrane spanning regions. Direct uptake measurements show that mutant yeast cells expressing the protein are able to take up [14C]methylamine. Methylamine uptake can be efficiently competed by NH4+ but not by K+. The methylamine uptake is optimal at pH 7 with a Km of 65 microM and a Ki for NH4+ of approximately 10 microM, is energy-dependent and can be inhibited by protonophores. The plant protein is highly related to an NH4+ transporter from yeast (Marini et al., accompanying manuscript). Sequence homologies to genes of bacterial and animal origin indicate that this type of transporter is conserved over a broad range of organisms. Taken together, the data provide strong evidence that a gene for the plant high affinity NH4+ uptake has been identified.

393 citations

Journal ArticleDOI
TL;DR: Observations are suggestive of partial functional redundancy between CLB5 and CLN genes, which is the only yeast cyclin whose deletion lengthens S phase and may have some role in promoting the G1/S transition.
Abstract: Budding yeast strains have three CLN genes, which have limited cyclin homology. At least one of the three is required for cell cycle START. Four B cyclins are known in yeast; two have been shown to function in mitosis. We have discovered a fifth B-cyclin gene, called CLBS, which when cloned on a CEN plasmid can rescue strains deleted for all three CLN genes. CLB5 transcript abundance peaks in G~, coincident with the CLN2 transcript but earlier than the CLB2 transcript. CLB5 deletion does not cause lethality, either alone or in combination with other CLN or CLB deletions. However, strains deleted for CLB5 require more time to complete S phase, suggesting that CLB5 promotes some step in DNA synthesis. CLB5 is the only yeast cyclin whose deletion lengthens S phase. CLB5 may also have some role in promoting the GI/S transition, because clnl cln2 strains require both CLN3 and CLB5 for viability on glycerol media and clnl,2,3- strains require CLB5 for rescue by the Drosophila melanogaster cdc2 gene. In conjunction with clnl,2,3- rescue by CLB5 overexpression and the coincident transcriptional regulation of CLB5 and CLN2, these observations are suggestive of partial functional redundancy between CLB5 and CLN genes.

391 citations

Book ChapterDOI
TL;DR: The described protocols enable thorough screening of polypeptide libraries with high confidence in the isolation of improved clones and opens the possibility of examining extracellular eukaryotic proteins, an important class of proteins not generally amenable to yeast two-hybrid or phage display methodologies.
Abstract: The described protocols enable thorough screening of polypeptide libraries with high confidence in the isolation of improved clones. It should be emphasized that the protocols have been fashioned for thoroughness, rather than speed. With library plasmid DNA in hand, the time to plated candidate yeast display mutants is typically 2-3 weeks. Each of the experimental approaches required for this method is fairly standard: yeast culture, immunofluorescent labeling, flow cytometry. Protocols that are more rapid could conceivably be developed by using solid substrate separations with magnetic beads, for instance. However, loss of the two-color normalization possible with flow cytometry would remove the quantitative advantage of the method. Yeast display complements existing polypeptide library methods and opens the possibility of examining extracellular eukaryotic proteins, an important class of proteins not generally amenable to yeast two-hybrid or phage display methodologies.

389 citations


Network Information
Related Topics (5)
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
95% related
Escherichia coli
59K papers, 2M citations
90% related
Fermentation
68.8K papers, 1.2M citations
89% related
Amino acid
124.9K papers, 4M citations
87% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,445
20223,214
2021816
2020870
2019977
2018968